Avalanche stratification - Experimental tests of the "metastable wedge" and "continuous flow" models

M. E. Swanson, M. Landreman, J. Michel, J. Kakalios

Research output: Contribution to journalArticlepeer-review

Abstract

When an initially homogeneous binary mixture of granular media such as fine and coarse sand is poured near the closed edge of a "quasi-two-dimensional" Hele-Shaw cell consisting of two vertical transparent plates held a narrow distance apart, the mixture spontaneously forms alternating segregated layers. Experimental measurements of this stratification effect are reported in order to determine which model, one which suggests that segregation only occurs when the granular material contained within a metastable heap between the critical and maximum angle of repose avalanches down the free surface, or one for which the segregation results from smaller particles becoming trapped in the top surface and being removed from the moving layer during continuous flow. The result reported here indicate that the Metastable Wedge model provides a natural explanation for the initial mixed zone which precedes the formation of the layers, while the Continuous Flow model explains the observed upward moving kink of segregated material for higher granular flux rates, and that both mechansims are necessary in order to understand the observed pairing of segregated layersfor intermediate flow rates and cell separations.

Original languageEnglish (US)
Pages (from-to)BB261-BB268
JournalMaterials Research Society Symposium - Proceedings
Volume627
DOIs
StatePublished - 2000

Fingerprint Dive into the research topics of 'Avalanche stratification - Experimental tests of the "metastable wedge" and "continuous flow" models'. Together they form a unique fingerprint.

Cite this