Abstract
A novel prototype gel oscillator that functions by dissipating the chemical energy of glucose by an enzyme-mediated reaction is proposed. The product of the reaction modulates the degree of swelling and hence the permeability of a poly(N-isopropylacrylamide-co-methacrylic acid) gel membrane which in turn regulates the flow of substrate to the enzyme. No external energy is required aside from the chemical energy of glucose present externally at constant concentration. A negative chemomechanical feedback loop is established which, coupled with hysteresis in the membrane permeability characteristics, produces pulsing oscillations. In this study, we introduce a simple model which provides guidelines for experimental design, and report preliminary experimental evidence for oscillation. Application of this prototype system to the episodic delivery of drugs and hormones is envisaged.
Original language | English (US) |
---|---|
Pages (from-to) | 267-275 |
Number of pages | 9 |
Journal | Chaos |
Volume | 9 |
Issue number | 2 |
DOIs | |
State | Published - Jun 1999 |