Automatic methods to extract New York heart association classification from clinical notes

Rui Zhang, Sisi Ma, Liesa Shanahan, Jessica Munroe, Sarah Horn, Stuart Speedie

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

Cardiac Resynchronization Therapy (CRT) is an established pacing therapy for heart failure patients. The New York Heart Association (NYHA) classification is often used as a measure of a patient's response to CRT. Identifying NYHA class for heart failure patients in an electronic health record (EHR) consistently, over time, can provide better understanding of the progression of heart failure and assessment of CRT response and effectiveness. However, NYHA is rarely stored in EHR structured data such information is often documented in unstructured clinical notes. In this study, we thus investigated the use of natural language processing (NLP) methods to identify NYHA classification from clinical notes. We collected 6,174 clinical notes that were matched with hospital-specific custom NYHA class diagnosis codes. Machine-learning based methods performed similar with a rule-based method. The best machine-learning method, support vector machine with n-gram features, performed the best (93% F-measure). Further validation of the findings is required.

Original languageEnglish (US)
Title of host publicationProceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017
EditorsIllhoi Yoo, Jane Huiru Zheng, Yang Gong, Xiaohua Tony Hu, Chi-Ren Shyu, Yana Bromberg, Jean Gao, Dmitry Korkin
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1296-1299
Number of pages4
ISBN (Electronic)9781509030491
DOIs
StatePublished - Dec 15 2017
Event2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017 - Kansas City, United States
Duration: Nov 13 2017Nov 16 2017

Publication series

NameProceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017
Volume2017-January

Other

Other2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017
CountryUnited States
CityKansas City
Period11/13/1711/16/17

Fingerprint

Cardiac Resynchronization Therapy
Cardiac resynchronization therapy
Heart Failure
Electronic Health Records
Natural Language Processing
Learning systems
Health
Support vector machines
Processing
Machine Learning
Therapeutics

Keywords

  • Clinical Notes
  • Electronic Health Records
  • Natural Language Processing
  • New York Heart Association (NYHA)

Cite this

Zhang, R., Ma, S., Shanahan, L., Munroe, J., Horn, S., & Speedie, S. (2017). Automatic methods to extract New York heart association classification from clinical notes. In I. Yoo, J. H. Zheng, Y. Gong, X. T. Hu, C-R. Shyu, Y. Bromberg, J. Gao, ... D. Korkin (Eds.), Proceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017 (pp. 1296-1299). (Proceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017; Vol. 2017-January). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/BIBM.2017.8217848

Automatic methods to extract New York heart association classification from clinical notes. / Zhang, Rui; Ma, Sisi; Shanahan, Liesa; Munroe, Jessica; Horn, Sarah; Speedie, Stuart.

Proceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017. ed. / Illhoi Yoo; Jane Huiru Zheng; Yang Gong; Xiaohua Tony Hu; Chi-Ren Shyu; Yana Bromberg; Jean Gao; Dmitry Korkin. Institute of Electrical and Electronics Engineers Inc., 2017. p. 1296-1299 (Proceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017; Vol. 2017-January).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Zhang, R, Ma, S, Shanahan, L, Munroe, J, Horn, S & Speedie, S 2017, Automatic methods to extract New York heart association classification from clinical notes. in I Yoo, JH Zheng, Y Gong, XT Hu, C-R Shyu, Y Bromberg, J Gao & D Korkin (eds), Proceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017. Proceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017, vol. 2017-January, Institute of Electrical and Electronics Engineers Inc., pp. 1296-1299, 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017, Kansas City, United States, 11/13/17. https://doi.org/10.1109/BIBM.2017.8217848
Zhang R, Ma S, Shanahan L, Munroe J, Horn S, Speedie S. Automatic methods to extract New York heart association classification from clinical notes. In Yoo I, Zheng JH, Gong Y, Hu XT, Shyu C-R, Bromberg Y, Gao J, Korkin D, editors, Proceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017. Institute of Electrical and Electronics Engineers Inc. 2017. p. 1296-1299. (Proceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017). https://doi.org/10.1109/BIBM.2017.8217848
Zhang, Rui ; Ma, Sisi ; Shanahan, Liesa ; Munroe, Jessica ; Horn, Sarah ; Speedie, Stuart. / Automatic methods to extract New York heart association classification from clinical notes. Proceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017. editor / Illhoi Yoo ; Jane Huiru Zheng ; Yang Gong ; Xiaohua Tony Hu ; Chi-Ren Shyu ; Yana Bromberg ; Jean Gao ; Dmitry Korkin. Institute of Electrical and Electronics Engineers Inc., 2017. pp. 1296-1299 (Proceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017).
@inproceedings{3755cb99cedd4b5f8aeafdc4e40d6829,
title = "Automatic methods to extract New York heart association classification from clinical notes",
abstract = "Cardiac Resynchronization Therapy (CRT) is an established pacing therapy for heart failure patients. The New York Heart Association (NYHA) classification is often used as a measure of a patient's response to CRT. Identifying NYHA class for heart failure patients in an electronic health record (EHR) consistently, over time, can provide better understanding of the progression of heart failure and assessment of CRT response and effectiveness. However, NYHA is rarely stored in EHR structured data such information is often documented in unstructured clinical notes. In this study, we thus investigated the use of natural language processing (NLP) methods to identify NYHA classification from clinical notes. We collected 6,174 clinical notes that were matched with hospital-specific custom NYHA class diagnosis codes. Machine-learning based methods performed similar with a rule-based method. The best machine-learning method, support vector machine with n-gram features, performed the best (93{\%} F-measure). Further validation of the findings is required.",
keywords = "Clinical Notes, Electronic Health Records, Natural Language Processing, New York Heart Association (NYHA)",
author = "Rui Zhang and Sisi Ma and Liesa Shanahan and Jessica Munroe and Sarah Horn and Stuart Speedie",
year = "2017",
month = "12",
day = "15",
doi = "10.1109/BIBM.2017.8217848",
language = "English (US)",
series = "Proceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "1296--1299",
editor = "Illhoi Yoo and Zheng, {Jane Huiru} and Yang Gong and Hu, {Xiaohua Tony} and Chi-Ren Shyu and Yana Bromberg and Jean Gao and Dmitry Korkin",
booktitle = "Proceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017",

}

TY - GEN

T1 - Automatic methods to extract New York heart association classification from clinical notes

AU - Zhang, Rui

AU - Ma, Sisi

AU - Shanahan, Liesa

AU - Munroe, Jessica

AU - Horn, Sarah

AU - Speedie, Stuart

PY - 2017/12/15

Y1 - 2017/12/15

N2 - Cardiac Resynchronization Therapy (CRT) is an established pacing therapy for heart failure patients. The New York Heart Association (NYHA) classification is often used as a measure of a patient's response to CRT. Identifying NYHA class for heart failure patients in an electronic health record (EHR) consistently, over time, can provide better understanding of the progression of heart failure and assessment of CRT response and effectiveness. However, NYHA is rarely stored in EHR structured data such information is often documented in unstructured clinical notes. In this study, we thus investigated the use of natural language processing (NLP) methods to identify NYHA classification from clinical notes. We collected 6,174 clinical notes that were matched with hospital-specific custom NYHA class diagnosis codes. Machine-learning based methods performed similar with a rule-based method. The best machine-learning method, support vector machine with n-gram features, performed the best (93% F-measure). Further validation of the findings is required.

AB - Cardiac Resynchronization Therapy (CRT) is an established pacing therapy for heart failure patients. The New York Heart Association (NYHA) classification is often used as a measure of a patient's response to CRT. Identifying NYHA class for heart failure patients in an electronic health record (EHR) consistently, over time, can provide better understanding of the progression of heart failure and assessment of CRT response and effectiveness. However, NYHA is rarely stored in EHR structured data such information is often documented in unstructured clinical notes. In this study, we thus investigated the use of natural language processing (NLP) methods to identify NYHA classification from clinical notes. We collected 6,174 clinical notes that were matched with hospital-specific custom NYHA class diagnosis codes. Machine-learning based methods performed similar with a rule-based method. The best machine-learning method, support vector machine with n-gram features, performed the best (93% F-measure). Further validation of the findings is required.

KW - Clinical Notes

KW - Electronic Health Records

KW - Natural Language Processing

KW - New York Heart Association (NYHA)

UR - http://www.scopus.com/inward/record.url?scp=85046041358&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85046041358&partnerID=8YFLogxK

U2 - 10.1109/BIBM.2017.8217848

DO - 10.1109/BIBM.2017.8217848

M3 - Conference contribution

C2 - 30034925

AN - SCOPUS:85046041358

T3 - Proceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017

SP - 1296

EP - 1299

BT - Proceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017

A2 - Yoo, Illhoi

A2 - Zheng, Jane Huiru

A2 - Gong, Yang

A2 - Hu, Xiaohua Tony

A2 - Shyu, Chi-Ren

A2 - Bromberg, Yana

A2 - Gao, Jean

A2 - Korkin, Dmitry

PB - Institute of Electrical and Electronics Engineers Inc.

ER -