Automatic evaluation of wheat resistance to fusarium head blight using dual mask-rcnn deep learning frameworks in computer vision

Wen Hao Su, Jiajing Zhang, Ce Yang, Rae Page, Tamas Szinyei, Cory D. Hirsch, Brian J. Steffenson

Research output: Contribution to journalArticlepeer-review

Abstract

In many regions of the world, wheat is vulnerable to severe yield and quality losses from the fungus disease of Fusarium head blight (FHB). The development of resistant cultivars is one means of ameliorating the devastating effects of this disease, but the breeding process requires the evaluation of hundreds of lines each year for reaction to the disease. These field evaluations are laborious, expensive, time-consuming, and are prone to rater error. A phenotyping cart that can quickly capture images of the spikes of wheat lines and their level of FHB infection would greatly benefit wheat breeding programs. In this study, mask region convolutional neural network (MaskRCNN) allowed for reliable identification of the symptom location and the disease severity of wheat spikes. Within a wheat line planted in the field, color images of individual wheat spikes and their corresponding diseased areas were labeled and segmented into sub-images. Images with annotated spikes and sub-images of individual spikes with labeled diseased areas were used as ground truth data to train Mask-RCNN models for automatic image segmentation of wheat spikes and FHB diseased areas, respectively. The feature pyramid network (FPN) based on ResNet-101 network was used as the backbone of Mask-RCNN for constructing the feature pyramid and extracting features. After generating mask images of wheat spikes from full-size images, Mask-RCNN was performed to predict diseased areas on each individual spike. This protocol enabled the rapid recognition of wheat spikes and diseased areas with the detection rates of 77.76% and 98.81%, respectively. The prediction accuracy of 77.19% was achieved by calculating the ratio of the wheat FHB severity value of prediction over ground truth. This study demonstrates the feasibility of rapidly determining levels of FHB in wheat spikes, which will greatly facilitate the breeding of resistant cultivars.

Original languageEnglish (US)
Article number26
Pages (from-to)1-20
Number of pages20
JournalRemote Sensing
Volume13
Issue number1
DOIs
StatePublished - Jan 1 2021

Bibliographical note

Funding Information:
Acknowledgments: The authors acknowledge support from the USDA-ARS United States Wheat and Barley Scab Initiative (Funding No. 58-5062-8-018), the Lieberman-Okinow Endowment at the University of Minnesota, and the State of Minnesota Small Grains Initiative. The authors also would like to acknowledge An Min from University of Minnesota for technical assistance in the completion of this research.

Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.

Keywords

  • Computer vision
  • Deep learning
  • Fusarium head blight
  • Target recognition
  • Wheat spike

Fingerprint Dive into the research topics of 'Automatic evaluation of wheat resistance to fusarium head blight using dual mask-rcnn deep learning frameworks in computer vision'. Together they form a unique fingerprint.

Cite this