TY - GEN
T1 - Atypical dust species in the ejecta of classical novae
AU - Helton, L. A.
AU - Evans, A.
AU - Woodward, C. E.
AU - Gehrz, R. D.
PY - 2011
Y1 - 2011
N2 - A classical nova outburst arises from a thermonuclear runaway in the hydrogen-rich material accreted onto the surface of a white dwarf in a binary system. These explosions can produce copious amounts of heavy element enriched material that are ejected violently into the surrounding interstellar medium. In some novae, conditions in the ejecta are suitable for the formation of dust of various compositions, including silicates, amorphous carbon, silicon carbide, and hydrocarbons. Multiple dust grain types are sometimes produced in the same system. CO formation in novae may not reach saturation, thus invalidating the usual paradigm in which the C:O ratio determines the dust species. A few novae, such as V705 Cas and DZ Cru, have exhibited emission features near 6, 8, and 11 μmthat are similar to "Unidentified Infrared" (UIR) features, but with significant differences in position and band structure. Here, we present Spitzer IRS spectra of two recent dusty novae, V2361 Cyg and V2362 Cyg, that harbor similar peculiar emission structures superimposed on features arising from carbonaceous grains. In other astronomical objects, such as star forming regions and young stellar objects, emission peaks at 6.2, 7.7, and 11.3 μmhave been associated with polycyclic aromatic hydrocarbon (PAH) complexes. We suggest that hydrogenated amorphous carbon (HAC) may be the source of these features in novae based upon the spectral behavior of the emission features and the conditions under which the dust formed.
AB - A classical nova outburst arises from a thermonuclear runaway in the hydrogen-rich material accreted onto the surface of a white dwarf in a binary system. These explosions can produce copious amounts of heavy element enriched material that are ejected violently into the surrounding interstellar medium. In some novae, conditions in the ejecta are suitable for the formation of dust of various compositions, including silicates, amorphous carbon, silicon carbide, and hydrocarbons. Multiple dust grain types are sometimes produced in the same system. CO formation in novae may not reach saturation, thus invalidating the usual paradigm in which the C:O ratio determines the dust species. A few novae, such as V705 Cas and DZ Cru, have exhibited emission features near 6, 8, and 11 μmthat are similar to "Unidentified Infrared" (UIR) features, but with significant differences in position and band structure. Here, we present Spitzer IRS spectra of two recent dusty novae, V2361 Cyg and V2362 Cyg, that harbor similar peculiar emission structures superimposed on features arising from carbonaceous grains. In other astronomical objects, such as star forming regions and young stellar objects, emission peaks at 6.2, 7.7, and 11.3 μmhave been associated with polycyclic aromatic hydrocarbon (PAH) complexes. We suggest that hydrogenated amorphous carbon (HAC) may be the source of these features in novae based upon the spectral behavior of the emission features and the conditions under which the dust formed.
UR - http://www.scopus.com/inward/record.url?scp=84874356050&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84874356050&partnerID=8YFLogxK
U2 - 10.1051/eas/1146042
DO - 10.1051/eas/1146042
M3 - Conference contribution
AN - SCOPUS:84874356050
SN - 9782759806249
T3 - EAS Publications Series
SP - 407
EP - 412
BT - PAHs and the Universe
T2 - PAHs and the Universe: A Symposium to Celebrate the 25th Anniversary of the PAH Hypothesis
Y2 - 31 May 2010 through 4 June 2010
ER -