TY - JOUR
T1 - ATP release and Ca2+ signalling by human bronchial epithelial cells following Alternaria aeroallergen exposure
AU - O'Grady, Scott M
AU - Patil, Nandadevi
AU - Melkamu, Tamene
AU - Maniak, Peter J
AU - Lancto, Cheryl
AU - Kita, Hirohito
PY - 2013/9
Y1 - 2013/9
N2 - Exposure of human bronchial epithelial (HBE) cells from normal and asthmatic subjects to extracts from Alternaria alternata evoked a rapid and sustained release of ATP with greater efficacy observed in epithelial cells from asthmatic patients. Previously, Alternaria allergens were shown to produce a sustained increase in intracellular Ca2+ concentration ([Ca2+]i) that was dependent on the coordinated activation of specific purinergic receptor (P2Y2 and P2X7) subtypes. In the present study, pretreatment with a cell-permeable Ca2+-chelating compound (BAPTA-AM) significantly inhibited ATP release, indicating dependency on [Ca2+]i. Alternaria-evoked ATP release exhibited a greater peak response and a slightly lower EC50 value in cells obtained from asthmatic donors compared to normal control cells. Furthermore, the maximum increase in [Ca2+]i resulting from Alternaria treatment was greater in cells from asthmatic patients compared to normal subjects. The vesicle transport inhibitor brefeldin A and BAPTA-AM significantly blocked Alternaria-stimulated incorporation of fluorescent lipid (FM1-43)-labelled vesicles into the plasma membrane and ATP release. In addition, inhibiting uptake of ATP into exocytotic vesicles with bafilomycin also reduced ATP release comparable to the effects of brefeldin A and BAPTA-AM. These results indicate that an important mechanism for Alternaria-induced ATP release is Ca2+ dependent and involves exocytosis of ATP. Serine and cysteine protease inhibitors also reduced Alternaria-induced ATP release; however, the sustained increase in [Ca2+]i typically observed following Alternaria exposure appeared to be independent of protease-activated receptor (PAR2) stimulation.
AB - Exposure of human bronchial epithelial (HBE) cells from normal and asthmatic subjects to extracts from Alternaria alternata evoked a rapid and sustained release of ATP with greater efficacy observed in epithelial cells from asthmatic patients. Previously, Alternaria allergens were shown to produce a sustained increase in intracellular Ca2+ concentration ([Ca2+]i) that was dependent on the coordinated activation of specific purinergic receptor (P2Y2 and P2X7) subtypes. In the present study, pretreatment with a cell-permeable Ca2+-chelating compound (BAPTA-AM) significantly inhibited ATP release, indicating dependency on [Ca2+]i. Alternaria-evoked ATP release exhibited a greater peak response and a slightly lower EC50 value in cells obtained from asthmatic donors compared to normal control cells. Furthermore, the maximum increase in [Ca2+]i resulting from Alternaria treatment was greater in cells from asthmatic patients compared to normal subjects. The vesicle transport inhibitor brefeldin A and BAPTA-AM significantly blocked Alternaria-stimulated incorporation of fluorescent lipid (FM1-43)-labelled vesicles into the plasma membrane and ATP release. In addition, inhibiting uptake of ATP into exocytotic vesicles with bafilomycin also reduced ATP release comparable to the effects of brefeldin A and BAPTA-AM. These results indicate that an important mechanism for Alternaria-induced ATP release is Ca2+ dependent and involves exocytosis of ATP. Serine and cysteine protease inhibitors also reduced Alternaria-induced ATP release; however, the sustained increase in [Ca2+]i typically observed following Alternaria exposure appeared to be independent of protease-activated receptor (PAR2) stimulation.
UR - http://www.scopus.com/inward/record.url?scp=84884282156&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84884282156&partnerID=8YFLogxK
U2 - 10.1113/jphysiol.2013.254649
DO - 10.1113/jphysiol.2013.254649
M3 - Article
C2 - 23858006
AN - SCOPUS:84884282156
SN - 0022-3751
VL - 591
SP - 4595
EP - 4609
JO - Journal of Physiology
JF - Journal of Physiology
IS - 18
ER -