ATP-induced pore formation in the plasma membrane of rat peritoneal mast cells

Polly A. Hofmann, Joseph M. Metzger, Marion L. Greaser, Richard L. Moss

Research output: Contribution to journalArticlepeer-review

60 Scopus citations


Various functional roles for myosin light chain 2 (LC2) have been suggested on the basis of numerous and predominantly in vitro biochemical studies. Using skinned fibers from rabbit psoas muscle, the present study examines the influence of partial removal of LC2 on isometric tension, stiffness, and maximum velocity of shortening at various levels of activation by Ca2+. Isometric tension, stiffness, and velocity of shortening were measured at pCa values between 6.6 and 4.5 (a) in a control fiber segment, (b) in the same fiber segment after partial removal of LC2, and (c) after recombination with LC2. The extraction solution contained 20 mM EDTA, 20 or 50 mM KC1, and either imidazole or PO42− as a pH buffer (pH 7.0). The amount of LC2 extracted varied with the temperature, duration of extraction, and whether or not troponin C (0.5 mg/ml) was added to the extraction solution. Extraction of 20-40% LC2 resulted in increased active tensions in the range of pCa’s between 6.6 and 5.7, but had no effect upon maximum tension. The tension-pCa relationship was left-shifted to lower [Ca2+] by as much as 0.2 pCa units after LC2 extraction. At low concentrations of Ca2+, an increase in stiffness proportional to the increase in tension was observed. Readdition of LC2 to these fiber segments resulted in a return of tension and stiffness to near control values. Stiffness during maximal activation was unaffected by partial extraction of LC2. LC2 extraction was shown to uniformly decrease (by 25-30%), the velocity of shortening during the high velocity phase but it did not significantly affect the low velocity phase of shortening. This effect was reversed by readdition of purified LC2 to the fiber segments. On the basis of these findings we conclude that LC2 may modulate the number of cross-bridges formed during Ca2+ activation and also the rate of cross-bridge detachment during shortening. These results are consistent with the idea that LC2 may modulate contraction via an influence upon the conformation of the S1-S2 hinge region of myosin.

Original languageEnglish (US)
Pages (from-to)477-498
Number of pages22
JournalJournal of General Physiology
Issue number3
StatePublished - Mar 1 1990


Dive into the research topics of 'ATP-induced pore formation in the plasma membrane of rat peritoneal mast cells'. Together they form a unique fingerprint.

Cite this