AtmSeer: Increasing transparency and controllability in automated machine learning

Qianwen Wang, Yao Ming, Zhihua Jin, Qiaomu Shen, Dongyu Liu, Micah J. Smith, Kalyan Veeramachaneni, Huamin Qu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

63 Scopus citations

Abstract

To relieve the pain of manually selecting machine learning algorithms and tuning hyperparameters, automated machine learning (AutoML) methods have been developed to automatically search for good models. Due to the huge model search space, it is impossible to try all models. Users tend to distrust automatic results and increase the search budget as much as they can, thereby undermining the efficiency of AutoML. To address these issues, we design and implement ATMSeer, an interactive visualization tool that supports users in refining the search space of AutoML and analyzing the results. To guide the design of ATMSeer, we derive a workflow of using AutoML based on interviews with machine learning experts. A multi-granularity visualization is proposed to enable users to monitor the AutoML process, analyze the searched models, and refine the search space in real time. We demonstrate the utility and usability of ATMSeer through two case studies, expert interviews, and a user study with 13 end users.

Original languageEnglish (US)
Title of host publicationCHI 2019 - Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
PublisherAssociation for Computing Machinery
ISBN (Electronic)9781450359702
DOIs
StatePublished - May 2 2019
Externally publishedYes
Event2019 CHI Conference on Human Factors in Computing Systems, CHI 2019 - Glasgow, United Kingdom
Duration: May 4 2019May 9 2019

Publication series

NameConference on Human Factors in Computing Systems - Proceedings

Conference

Conference2019 CHI Conference on Human Factors in Computing Systems, CHI 2019
Country/TerritoryUnited Kingdom
CityGlasgow
Period5/4/195/9/19

Bibliographical note

Publisher Copyright:
© 2019 Copyright held by the owner/author(s).

Keywords

  • Automated machine learning
  • Data visualization

Fingerprint

Dive into the research topics of 'AtmSeer: Increasing transparency and controllability in automated machine learning'. Together they form a unique fingerprint.

Cite this