Abstract
NF-κB is a transcription factor activated in response to inflammatory, genotoxic and oxidative stress and important for driving senescence and aging. Ataxia-telangiectasia mutated (ATM) kinase, a core component of DNA damage response signaling, activates NF-κB in response to genotoxic and oxidative stress via post-translational modifications. Here we demonstrate that ATM is activated in senescent cells in culture and murine tissues from Ercc1-deficient mouse models of accelerated aging, as well as naturally aged mice. Genetic and pharmacologic inhibition of ATM reduced activation of NF-κB and markers of senescence and the senescence-associated secretory phenotype (SASP) in senescent Ercc1 -/- MEFs. Ercc1 -/Δ mice heterozygous for Atm have reduced NF-κB activity and cellular senescence, improved function of muscle-derived stem/progenetor cells (MDSPCs) and extended healthspan with reduced age-related pathology especially age-related bone and intervertebral disc pathologies. In addition, treatment of Ercc1 -/∆ mice with the ATM inhibitor KU-55933 suppressed markers of senescence and SASP. Taken together, these results demonstrate that the ATM kinase is a major mediator of DNA damage-induced, NF-κB-mediated cellular senescence, stem cell dysfunction and aging and thus represents a therapeutic target to slow the progression of aging.
Original language | English (US) |
---|---|
Pages (from-to) | 4688-4710 |
Number of pages | 23 |
Journal | Aging |
Volume | 12 |
Issue number | 6 |
DOIs | |
State | Published - Mar 22 2020 |
Bibliographical note
Funding Information:This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (NRF-2017R1E1 A1A01074533, NRF-2014R1A6A3A04054307, and NRF-2017R1A2B2005730).
Keywords
- ATM
- Aging
- Cellular senescence
- DNA damage response
- NF-κB
PubMed: MeSH publication types
- Research Support, Non-U.S. Gov't
- Journal Article
- Research Support, N.I.H., Extramural