TY - JOUR
T1 - Asynchronous subgradient methods with unbounded delays for communication networks
AU - Gatsis, Nikolaos
AU - Giannakis, Georgios B
PY - 2012
Y1 - 2012
N2 - Dual decomposition coupled with the subgradient method has found application to optimal resource management in communication networks, as it can lead to distributed and scalable algorithms. Network entities - nodes or functional layers - exchange Lagrange multipliers and primal minimizers of the Lagrangian function towards optimizing a network-wide performance metric. It is of interest to study the performance of the resultant algorithms when such exchanges are delayed or lost. This paper deals with such asynchronous dual subgradient methods in separable convex programming. In this scenario, the subgradient vector is a sum of components, each possibly corresponding to an outdated Lagrange multiplier, and not the current one. A number of network entities is allowed to prematurely stop updating their corresponding variables, thereby effecting infinite delay between the current iterate and the multipliers used for a number of subgradient components. Conditions for convergence of the algorithm are developed. Specific applications include multipath routing in wireline networks and cross-layer optimization in wireless networks. Numerical tests for multipath routing in the Abilene network topology are presented.
AB - Dual decomposition coupled with the subgradient method has found application to optimal resource management in communication networks, as it can lead to distributed and scalable algorithms. Network entities - nodes or functional layers - exchange Lagrange multipliers and primal minimizers of the Lagrangian function towards optimizing a network-wide performance metric. It is of interest to study the performance of the resultant algorithms when such exchanges are delayed or lost. This paper deals with such asynchronous dual subgradient methods in separable convex programming. In this scenario, the subgradient vector is a sum of components, each possibly corresponding to an outdated Lagrange multiplier, and not the current one. A number of network entities is allowed to prematurely stop updating their corresponding variables, thereby effecting infinite delay between the current iterate and the multipliers used for a number of subgradient components. Conditions for convergence of the algorithm are developed. Specific applications include multipath routing in wireline networks and cross-layer optimization in wireless networks. Numerical tests for multipath routing in the Abilene network topology are presented.
UR - http://www.scopus.com/inward/record.url?scp=84874251969&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84874251969&partnerID=8YFLogxK
U2 - 10.1109/CDC.2012.6426107
DO - 10.1109/CDC.2012.6426107
M3 - Conference article
AN - SCOPUS:84874251969
SN - 0743-1546
SP - 5870
EP - 5875
JO - Proceedings of the IEEE Conference on Decision and Control
JF - Proceedings of the IEEE Conference on Decision and Control
M1 - 6426107
T2 - 51st IEEE Conference on Decision and Control, CDC 2012
Y2 - 10 December 2012 through 13 December 2012
ER -