Astrocytes modulate sensory-evoked neuronal network activity

Justin Lines, Eduardo D. Martin, Paulo Kofuji, Juan Aguilar, Alfonso Araque

Research output: Contribution to journalArticlepeer-review

74 Scopus citations

Abstract

While neurons principally mediate brain function, astrocytes are emerging as cells with important neuromodulatory actions in brain physiology. In addition to homeostatic roles, astrocytes respond to neurotransmitters with calcium transients stimulating the release of gliotransmitters that regulate synaptic and neuronal functions. We investigated astrocyte-neuronal network interactions in vivo by combining two-photon microscopy to monitor astrocyte calcium and electrocorticogram to record neuronal network activity in the somatosensory cortex during sensory stimulation. We found astrocytes respond to sensory stimuli in a stimulus-dependent manner. Sensory stimuli elicit a surge of neuronal network activity in the gamma range (30–50 Hz) followed by a delayed astrocyte activity that dampens the steady-state gamma activity. This sensory-evoked gamma activity increase is enhanced in transgenic mice with impaired astrocyte calcium signaling and is decreased by pharmacogenetic stimulation of astrocytes. Therefore, cortical astrocytes respond to sensory inputs and regulate sensory-evoked neuronal network activity maximizing its dynamic range.

Original languageEnglish (US)
Article number3689
JournalNature communications
Volume11
Issue number1
DOIs
StatePublished - Jul 23 2020

Bibliographical note

Publisher Copyright:
© 2020, The Author(s).

Keywords

  • Animals
  • Astrocytes/metabolism
  • Calcium/metabolism
  • Electric Stimulation
  • Female
  • Gamma Rhythm/physiology
  • Male
  • Mice
  • Nerve Net/physiology
  • Sensory Receptor Cells/physiology
  • Somatosensory Cortex/cytology

PubMed: MeSH publication types

  • Research Support, Non-U.S. Gov't
  • Journal Article
  • Research Support, N.I.H., Extramural

Fingerprint

Dive into the research topics of 'Astrocytes modulate sensory-evoked neuronal network activity'. Together they form a unique fingerprint.

Cite this