Abstract
We investigated the effects of Astragalus polysaccharide (APS) on palmitate-induced insulin resistance in C2C12 skeletal muscle myotubes. Palmitate-reduced glucose uptake was restored by APS. APS prevented palmitate-induced C2C12 myotubes from impaired insulin signaling by inhibiting Ser307 phosphorylation of insulin receptor substrate-1 (IRS-1) and increasing Ser473 phosphorylation of Akt. Moreover, the increases in protein-tyrosine phosphatase-1B (PTP1B) protein level and NF-κB activation associated with palmitate treatment were also prevented by APS. However the treatment with APS didn't change AMP-activated protein kinase (AMPK) activation in palmitate-induced myotubes. The results of the present study suggest that Astragalus polysaccharide inhibits palmitate-induced insulin resistance in C2C12 myotubes by inhibiting expression of PTP1B and regulating NF-κB but not AMPK pathway.
Original language | English (US) |
---|---|
Pages (from-to) | 7083-7092 |
Number of pages | 10 |
Journal | Molecules |
Volume | 17 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2012 |
Keywords
- Astragalus polysaccharide
- Insulin resistance
- NF-κB
- PTP1B