Associative learning of scene parameters from images

Daniel Kersten, Alice J. O'Toole, Margaret E. Sereno, David C. Knill, James A. Anderson

Research output: Contribution to journalArticle

15 Scopus citations

Abstract

An important problem for both biological and machine vision is the construction of scene representations from 2-D image data that are useful for recognition. One problem is that there can be more than one world out there giving rise to the image data at hand. Additional constraints regarding the nature of the environment have to be used to narrow the range of solutions. Although effort has gone into understanding these constraints, relatively little has been done to understand how neurallike learning networks may be used to solve scene-from-image problems. A paradigm is proposed in which stochastic models of scene properties are used to provide samples of image and scene representations. Distributed associative networks are taught, by example, the statistical constraints relating the image to the representation of the scene. This technique is applied to problems in optic flow, shape-from-shading, and stereo.

Original languageEnglish (US)
Pages (from-to)4999-5006
Number of pages8
JournalApplied Optics
Volume26
Issue number23
DOIs
StatePublished - Dec 1987

Fingerprint Dive into the research topics of 'Associative learning of scene parameters from images'. Together they form a unique fingerprint.

  • Cite this

    Kersten, D., O'Toole, A. J., Sereno, M. E., Knill, D. C., & Anderson, J. A. (1987). Associative learning of scene parameters from images. Applied Optics, 26(23), 4999-5006. https://doi.org/10.1364/AO.26.004999