TY - JOUR
T1 - Associations of prolonged QTc in sickle cell disease
AU - Indik, Julia H.
AU - Nair, Vineet
AU - Rafikov, Ruslan
AU - Nyotowidjojo, Iwan S.
AU - Bisla, Jaskanwal
AU - Kansal, Mayank
AU - Parikh, Devang S.
AU - Robinson, Melissa
AU - Desai, Anand
AU - Oberoi, Megha
AU - Gupta, Akash
AU - Abbasi, Taimur
AU - Khalpey, Zain
AU - Patel, Amit R.
AU - Lang, Roberto M.
AU - Dudley, Samuel C.
AU - Choi, Bum Rak
AU - Garcia, Joe G.N.
AU - Machado, Roberto F.
AU - Desai, Ankit A.
N1 - Publisher Copyright:
© 2016, Public Library of Science. All rights reserved. This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
PY - 2016/10
Y1 - 2016/10
N2 - Sudden death is a leading cause of mortality in sickle cell disease, implicating ventricular tachyarrhythmias. Prolonged QTc on an electrocardiogram (ECG), commonly seen with myocardial ischemia, is a known risk for polymorphic ventricular tachycardia (VT). We hypothesized that prolonged QTc is associated with mortality in sickle cell disease. ECG were analyzed from a cohort of 224 sickle patients (University of Illinois at Chicago, UIC) along with available laboratory, and echocardiographic findings, and from another cohort of 38 patients (University of Chicago, UC) for which cardiac MRI and free heme values were also measured. In the UIC cohort, QTc was potentially related to mortality with a hazard ratio (HR) of 1.22 per 10ms, (P = 0.015), and a HR = 3.19 (P = 0.045) for a QTc>480ms. In multivariate analyses, QTc remained significantly associated with survival after adjusting for inpatient ECG status (HR 1.26 per 10ms interval, P = 0.010) and genotype status [HR 1.21 per 10ms interval, P = 0.037). QTc trended toward association with mortality after adjusting for both LDH and hydroxyurea use (HR 1.21 per 10ms interval, P = 0.062) but was not significant after adjusting for TRV. In univariate analyses, QTc was related to markers of hemolysis including AST (P = 0.031), hemoglobin (P = 0.014), TR velocity (P = 0.036), higher in inpatients (P<0.001) and those with an SS compared to SC genotype (P<0.001) in the UIC cohort as well as to free heme in the UC cohort (P = 0.002). These findings support a relationship of prolonged QTc with hemolysis and potentially mortality in sickle cell disease.
AB - Sudden death is a leading cause of mortality in sickle cell disease, implicating ventricular tachyarrhythmias. Prolonged QTc on an electrocardiogram (ECG), commonly seen with myocardial ischemia, is a known risk for polymorphic ventricular tachycardia (VT). We hypothesized that prolonged QTc is associated with mortality in sickle cell disease. ECG were analyzed from a cohort of 224 sickle patients (University of Illinois at Chicago, UIC) along with available laboratory, and echocardiographic findings, and from another cohort of 38 patients (University of Chicago, UC) for which cardiac MRI and free heme values were also measured. In the UIC cohort, QTc was potentially related to mortality with a hazard ratio (HR) of 1.22 per 10ms, (P = 0.015), and a HR = 3.19 (P = 0.045) for a QTc>480ms. In multivariate analyses, QTc remained significantly associated with survival after adjusting for inpatient ECG status (HR 1.26 per 10ms interval, P = 0.010) and genotype status [HR 1.21 per 10ms interval, P = 0.037). QTc trended toward association with mortality after adjusting for both LDH and hydroxyurea use (HR 1.21 per 10ms interval, P = 0.062) but was not significant after adjusting for TRV. In univariate analyses, QTc was related to markers of hemolysis including AST (P = 0.031), hemoglobin (P = 0.014), TR velocity (P = 0.036), higher in inpatients (P<0.001) and those with an SS compared to SC genotype (P<0.001) in the UIC cohort as well as to free heme in the UC cohort (P = 0.002). These findings support a relationship of prolonged QTc with hemolysis and potentially mortality in sickle cell disease.
UR - http://www.scopus.com/inward/record.url?scp=84991316343&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84991316343&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0164526
DO - 10.1371/journal.pone.0164526
M3 - Article
C2 - 27736922
AN - SCOPUS:84991316343
SN - 1932-6203
VL - 11
JO - PloS one
JF - PloS one
IS - 10
M1 - e0164526
ER -