Abstract
In this article, we consider various arithmetic properties of the function po(n) which denotes the number of overpartitions of n using only odd parts. This function has arisen in a number of recent papers, but in contexts which are very different from overpartitions. We prove a number of arithmetic results including several Ramanujan-like congruences satisfied by p o(n) and some easily-stated characterizations of po(n) modulo small powers of two. For example, it is proven that, for n≥1, p o(n) ≡ 0 (mod 4) if and only if n is neither a square nor twice a square.
Original language | English (US) |
---|---|
Pages (from-to) | 353-367 |
Number of pages | 15 |
Journal | Annals of Combinatorics |
Volume | 10 |
Issue number | 3 |
DOIs | |
State | Published - Dec 2006 |
Externally published | Yes |
Keywords
- Congruence
- Odd parts
- Overpartition