Arg-Phe-Phe d -Amino Acid Stereochemistry Scan in the Macrocyclic Agouti-Related Protein Antagonist Scaffold c[Pro-Arg-Phe-Phe-Xxx-Ala-Phe-DPro] Results in Unanticipated Melanocortin-1 Receptor Agonist Profiles

Mark D. Ericson, Zoe M. Koerperich, Katie T. Freeman, Katlyn A. Fleming, Carrie Haskell-Luevano

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

The melanocortin-3 and melanocortin-4 receptors (MC3R and MC4R), endogenous agonists derived from the proopiomelanocortin gene transcript, and naturally occurring antagonists agouti and agouti-related protein (AGRP) have been linked to biological pathways associated with energy homeostasis. The active tripeptide sequence of AGRP, Arg111-Phe112-Phe113, is located on a hypothesized β-hairpin loop. Herein, stereochemical modifications of the Arg-Phe-Phe sequence were examined in the octapeptide AGRP-derived macrocyclic scaffold c[Pro-Arg-Phe-Phe-Xxx-Ala-Phe-DPro], where Xxx was Asn or diaminopropionic acid (Dap). Macrocyclic peptides were synthesized with one, two, or three residues of the Arg-Phe-Phe sequence substituted with the corresponding d-isomer(s), generating a 14 compound library. While l-to-d inversions of the Arg-Phe-Phe sequence in a 20-residue AGRP-derived ligand previously resulted in agonist activity at the MC1R, MC3R, MC4R, and MC5R, only the MC1R was consistently stimulated by the macrocyclic ligands in the present study, with varying ligand potencies and efficacies observed at the MC1R. A general trend of increased MC4R antagonist potency was observed for Dap-containing compounds, while MC5R inverse agonist activity was observed for select ligands. It was observed that stereochemical modification of the Arg-Phe-Phe active tripeptide sequence was insufficient to convert melanocortin antagonist into agonists. Overall, these observations are important in the design of melanocortin ligands possessing potent and selective agonist and antagonist activities.

Original languageEnglish (US)
Pages (from-to)3015-3023
Number of pages9
JournalACS Chemical Neuroscience
Volume9
Issue number12
DOIs
StatePublished - Dec 19 2018

Bibliographical note

Funding Information:
This work has been supported by NIH Grant R01DK091906. C.H.-L. is a recipient of a 2017 Wallin Neuroscience Discovery Fund Award through the University of Minnesota. M.D.E. is a recipient of an NIH Postdoctoral Fellowship (F32DK108402). K.A.F. is a recipient of a 2018 Bighley Fellowship and a 2018 Rowell Fellowship through the University of Minnesota.

Keywords

  • AGRP
  • d -amino acids
  • macrocycles
  • melanocortin receptors

Fingerprint Dive into the research topics of 'Arg-Phe-Phe d -Amino Acid Stereochemistry Scan in the Macrocyclic Agouti-Related Protein Antagonist Scaffold c[Pro-Arg-Phe-Phe-Xxx-Ala-Phe-DPro] Results in Unanticipated Melanocortin-1 Receptor Agonist Profiles'. Together they form a unique fingerprint.

Cite this