Projects per year
Abstract
Metal-organic frameworks (MOFs) built up from Zr6-based nodes and multi-topic carboxylate linkers have attracted attention due to their favourable thermal and chemical stability. However, the hydrolytic stability of some of these Zr6-based MOFs has recently been questioned. Herein we demonstrate that two Zr6-based frameworks, namely UiO-67 and NU-1000, are stable towards linker hydrolysis in H2O, but collapse during activation from H2O. Importantly, this framework collapse can be overcome by utilizing solvent-exchange to solvents exhibiting lower capillary forces such as acetone.
Original language | English (US) |
---|---|
Pages (from-to) | 8944-8946 |
Number of pages | 3 |
Journal | Chemical Communications |
Volume | 50 |
Issue number | 64 |
DOIs | |
State | Published - Jul 15 2014 |
Fingerprint
Dive into the research topics of 'Are Zr6-based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse'. Together they form a unique fingerprint.Projects
- 1 Finished
-
NMGC: Nanoporous Materials Genome: Methods and Software to Optimize Gas Storage, Separations, and Catalysis (Phase 1)
Siepmann, I. (PI), Cramer, C. (CoI), Gagliardi, L. (CoI), Truhlar, D. G. (CoI), Tsapatsis, M. (CoI) & Goodpaster, J. D. (CoI)
9/1/12 → 8/31/17
Project: Research project