Aquatic biomarkers record Pleistocene environmental changes at Paleolake Olduvai, Tanzania

Devon E. Colcord, Andrea M. Shilling, Katherine H. Freeman, Jackson K. Njau, Ian G. Stanistreet, Harald Stollhofen, Kathy D. Schick, Nicholas Toth, Simon C. Brassell

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Several hypotheses invoke climatic variability as a driving force for hominin evolution. Thus, high-resolution records of climate and environmental variability from anthropologically significant locations can help test these hypotheses. Sedimentary sequences recovered by the Olduvai Gorge Coring Project (OGCP) help evaluate climatic and environmental changes at Olduvai Gorge, Tanzania through the analyses of various biogeochemical proxies. The stratigraphic sequence of OGCP Core 2A can be correlated with horizons associated with hominins and is chronologically constrained by distinctive dated horizons, such as the Bed I Basalt and Tuff IB. The lacustrine interval from 76.6 to 86.9 m depth is ideally suited for high-resolution analyses of biogeochemical proxies as it is rich in organic carbon (>1%TOC). The hydrogen isotopic composition of nC31 in this interval of OGCP Core 2A records the effects of precession-driven wet-dry cycles on the terrestrial environment that led to alternations between woodland and grassland ecosystems, comparable to those documented by previous investigations of outcrop analogues at Olduvai. Here, we examine stratigraphic variations in the abundance of biomarkers (C28 steradienes, C17 and C23 n-alkanes, C27 and C28 A-norsteranes, fern-8-ene, and chromans) derived from aquatic organisms (algae, cyanobacteria, sponges, macrophytes, etc.) to determine the response of Paleolake Olduvai to climate variability. In general, these aquatic biomarkers reflect the productivity of the lake environment and exhibit the same precession-driven wet-dry cycles recorded by terrestrial biogeochemical signatures. However, they also provide evidence of abrupt (<~300 yr) changes in lake level and corresponding aquatic communities superimposed on the longer-term Milankovitch cycles. Thus, evidence for climatic variability is manifested through the pacing and intensity of changes in both terrestrial and aquatic ecosystems, but the different rates of the responses on land and in the aquatic environment potentially had a complex influence on water and food resources that were important factors for hominin habitation and evolution.

Original languageEnglish (US)
Pages (from-to)250-261
Number of pages12
JournalPalaeogeography, Palaeoclimatology, Palaeoecology
Volume524
DOIs
StatePublished - Jun 15 2019

Bibliographical note

Funding Information:
We would like to thank the Stone Age Institute for organizing and funding the collection of the core through the Olduvai Gorge Coring Project (OGCP) with grants from the Kaman Foundation, the Gordon and Ann Getty Foundation, the John Templeton Foundation, the Fred Maytag Foundation, and Kay and Frank Woods. We would also like to thank the Tanzanian Commission for Science and Technology, Tanzanian Department of Antiquities, Ministry of Natural Resources & Tourism, and the Ngorongoro Conservation Area Authority (NCAA) for enabling the collection of samples. We greatly appreciate the assistance with core handling and sample collection from LacCore, specifically A. Noren and K. Brady. Additionally, we would like to thank J. Karty and A. Hansen (Indiana University) for assistance with GC–MS analyses. Funding for organic geochemical analyses was provided by the Dept. of Earth & Atmospheric Sciences (Indiana University).

Publisher Copyright:
© 2019 Elsevier B.V.

Copyright:
Copyright 2019 Elsevier B.V., All rights reserved.

Keywords

  • Biomarkers
  • Hominin evolution
  • Lacustrine sediments
  • Sediment core

Continental Scientific Drilling Facility tags

  • OGDP

Fingerprint

Dive into the research topics of 'Aquatic biomarkers record Pleistocene environmental changes at Paleolake Olduvai, Tanzania'. Together they form a unique fingerprint.

Cite this