Application of the adaptive validation substudy design to colorectal cancer recurrence

Lindsay J. Collin, Anders H. Riis, Richard F. Maclehose, Thomas P. Ahern, Rune Erichsen, Ole Thorlacius-Ussing, Timothy L. Lash

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Among men and women diagnosed with colorectal cancer (CRC), 20–50% will develop a cancer recurrence. Cancer recurrences are not routinely captured by most population-based registries; however, linkage across Danish registries allows for the development of predictive models to detect recurrence. Successful application of such models in population-based settings requires validation against a gold standard to ensure the accuracy of recurrence identification. Objective: We apply a recently developed validation study design for prospectively collected validation data to validate predicted CRC recurrences against gold standard diagnoses from medical records in an actively followed cohort of CRC patients in Denmark. Methods: We use a Bayesian monitoring framework, traditionally used in clinical trials, to iteratively update classification parameters (positive and negative predictive values, and sensitivity and specificity) in an adaptive validation substudy design. This design allows determination of the sample size necessary to estimate the corresponding parameters and to identify when validation efforts can cease based on predefined criteria for parameter values and levels of precision. Results: Among 355 men and women diagnosed with CRC in Denmark and actively followed semi-annually, there were 63 recurrences diagnosed by active follow-up and 70 recurrences identified by a predictive algorithm. The adaptive validation design met stopping criteria for the classification parameters after 120 patients had their recurrence information validated. This stopping point yielded parameter estimates for the classification parameters similar to those obtained when the entire cohort was validated, with 66% less patients needed for the validation study. Conclusion: In this proof of concept application of the adaptive validation study design for outcome misclassification, we demonstrated the ability of the method to accurately determine when sufficient validation data have been collected. This method serves as a novel validation substudy design for prospectively collected data with simultaneous implementation of a validation study.

Original languageEnglish (US)
Pages (from-to)113-121
Number of pages9
JournalClinical Epidemiology
Volume12
DOIs
StatePublished - 2020

Bibliographical note

Funding Information:
The original validation project was supported by a research grant from the Danish Research and Innovation Fund (# 0602-01980) awarded to Timothy L. Lash. This extension was supported in part by the US National Cancer Institute (F31CA239566) awarded to Lindsay J Collin (R01C A234538) awarded to Timothy L Lash, and the US National Library of Medicine (R01LM013049) awarded to Timothy L Lash. Thomas P Ahern was supported in part by an award from the National Institute for General Medical Sciences (P20 GM103644).

Funding Information:
The original validation project was supported by a research grant from the Danish Research and Innovation Fund (#0602-01980) awarded to Timothy L. Lash. This extension was supported in part by the US National Cancer Institute (F31CA239566) awarded to Lindsay J Collin (R01C A234538) awarded to Timothy L Lash, and the US National Library of Medicine (R01LM013049) awarded to Timothy L Lash. Thomas P Ahern was supported in part by an award from the National Institute for General Medical Sciences (P20 GM103644).

Keywords

  • Colorectal cancer recurrence
  • Validation study design

PubMed: MeSH publication types

  • Journal Article

Fingerprint Dive into the research topics of 'Application of the adaptive validation substudy design to colorectal cancer recurrence'. Together they form a unique fingerprint.

Cite this