Abstract
Design of hydraulic fracturing laboratory experiments that capture similar phenomena to those expected at the field scale requires consideration of the scaling laws intrinsic to the mathematical model. Analysis of the model for a radial, Newtonian-fluid-driven fracture in an infinite elastic homogeneous medium indicates that fractures evolve relative to three timescales associated with transitions between regimes characterized by large/small fluid lag, large/small effective fluid viscosity, and large/small fluid leak-off. The three invariants of the model are given by the ratio of the treatment time with these timescales, hence they provide the key for experimental design and interpretation that properly accounts for the difference between the field and laboratory scales. This paper presents a practical experimental design method based on these considerations. Experimental results are presented for which the invariant associated with fluid viscosity takes on different values. The results are in close agreement with a published solution that is based on modelling the crack tip using the classical Linear Elastic Fracture Mechanics when the viscosity invariant is small. However, when the viscosity invariant is O(1) the experimental results are in agreement with a published solution that utilizes a unique crack tip singularity associated with fluid-solid coupling in the tip region.
Original language | English (US) |
---|---|
Title of host publication | American Rock Mechanics Association - 40th US Rock Mechanics Symposium, ALASKA ROCKS 2005 |
Subtitle of host publication | Rock Mechanics for Energy, Mineral and Infrastructure Development in the Northern Regions |
Publisher | American Rock Mechanics Association (ARMA) |
ISBN (Print) | 9781604234541 |
State | Published - 2005 |
Event | 40th US Rock Mechanics Symposium: Rock Mechanics for Energy, Mineral and Infrastructure Development in the Northern Regions, ALASKA ROCKS 2005 - Anchorage, United States Duration: Jun 25 2005 → Jun 29 2005 |
Publication series
Name | American Rock Mechanics Association - 40th US Rock Mechanics Symposium, ALASKA ROCKS 2005: Rock Mechanics for Energy, Mineral and Infrastructure Development in the Northern Regions |
---|
Other
Other | 40th US Rock Mechanics Symposium: Rock Mechanics for Energy, Mineral and Infrastructure Development in the Northern Regions, ALASKA ROCKS 2005 |
---|---|
Country/Territory | United States |
City | Anchorage |
Period | 6/25/05 → 6/29/05 |
Bibliographical note
Funding Information:The authors wish to acknowledge funding from the Australian Coal Association Research Program (ACARP) project C12021. Additional support has been provided by CSIRO Petroleum, the Theodore Bennett Chair, and Schlumberger.
Funding Information:
ACKNOWLEDGMENT The authors wish to acknowledge funding from the Australian Coal Association Research Program (ACARP) project C12021. Additional support has been provided by CSIRO Petroleum, the Theodore Bennett Chair, and Schlumberger.
Publisher Copyright:
Copyright 2005, ARMA, American Rock Mechanics Association.
Copyright:
Copyright 2019 Elsevier B.V., All rights reserved.