TY - JOUR
T1 - Application of highly stable biochar catalysts for efficient pyrolysis of plastics
T2 - A readily accessible potential solution to a global waste crisis
AU - Wang, Chenxi
AU - Lei, Hanwu
AU - Qian, Moriko
AU - Huo, Erguang
AU - Zhao, Yunfeng
AU - Zhang, Qingfa
AU - Mateo, Wendy
AU - Lin, Xiaona
AU - Kong, Xiao
AU - Zou, Rongge
AU - Ruan, Roger
N1 - Publisher Copyright:
© 2020 The Royal Society of Chemistry.
PY - 2020/9
Y1 - 2020/9
N2 - Biochar catalysts derived from corn stover and Douglas fir were employed for the catalytic pyrolysis of model low-density polyethylene (LDPE) and real waste plastics. The corn stover derived biochar resulted in a liquid yield of about 40 wt% without wax formation. The liquid product comprised about 60% of C8-C16 aliphatic, 20% of mono-aromatic, and 20% of C17-C23 aliphatic hydrocarbons. The gas yield was about 60 wt% with 60-80 vol% of H2. The corn stover derived biochar tended to generate more H2 gas, and by contrast, CH4 formation was favored when employing the Douglas fir derived biochar catalyst. As for the properties of reused biochars, the biochar catalyst derived from corn stover showed much better activity and longer lifetime than Douglas fir derived biochar, which might arise from the different contents of inherent minerals in biochar catalysts. After 20 times of experimental reuses and recycles, the corn stover derived biochar still possessed high activity in degrading LDPE without wax formation. And after 10 cycles of reuse of Douglas fir derived biochar, the catalyst was still active but its activity level sharply declined with the production of amounts of wax. Additionally, real packaging plastic wastes respectively consisting of LDPE, high-density polyethylene (HDPE), polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET) also could be effectively converted into valuable hydrocarbons and gases through using biochar catalysts, which implied that biochar catalysts could be applied to the conversion of these common waste plastics. The current study demonstrated a new and efficient conversion of various waste plastics to jet fuels and H2 by using a powerfully simple, and long-life biochar catalyst.
AB - Biochar catalysts derived from corn stover and Douglas fir were employed for the catalytic pyrolysis of model low-density polyethylene (LDPE) and real waste plastics. The corn stover derived biochar resulted in a liquid yield of about 40 wt% without wax formation. The liquid product comprised about 60% of C8-C16 aliphatic, 20% of mono-aromatic, and 20% of C17-C23 aliphatic hydrocarbons. The gas yield was about 60 wt% with 60-80 vol% of H2. The corn stover derived biochar tended to generate more H2 gas, and by contrast, CH4 formation was favored when employing the Douglas fir derived biochar catalyst. As for the properties of reused biochars, the biochar catalyst derived from corn stover showed much better activity and longer lifetime than Douglas fir derived biochar, which might arise from the different contents of inherent minerals in biochar catalysts. After 20 times of experimental reuses and recycles, the corn stover derived biochar still possessed high activity in degrading LDPE without wax formation. And after 10 cycles of reuse of Douglas fir derived biochar, the catalyst was still active but its activity level sharply declined with the production of amounts of wax. Additionally, real packaging plastic wastes respectively consisting of LDPE, high-density polyethylene (HDPE), polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET) also could be effectively converted into valuable hydrocarbons and gases through using biochar catalysts, which implied that biochar catalysts could be applied to the conversion of these common waste plastics. The current study demonstrated a new and efficient conversion of various waste plastics to jet fuels and H2 by using a powerfully simple, and long-life biochar catalyst.
UR - http://www.scopus.com/inward/record.url?scp=85090089102&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85090089102&partnerID=8YFLogxK
U2 - 10.1039/d0se00652a
DO - 10.1039/d0se00652a
M3 - Article
AN - SCOPUS:85090089102
SN - 2398-4902
VL - 4
SP - 4614
EP - 4624
JO - Sustainable Energy and Fuels
JF - Sustainable Energy and Fuels
IS - 9
ER -