AppGP: An alternative structural representation for GP

Nicholas Freitag McPhee, Nick Hopper

Research output: Contribution to conferencePaperpeer-review

2 Scopus citations


It has been shown that standard genetic programming using standard subtree crossover is prone to a form of structural convergence which makes it extremely difficult to make changes near the root, occasionally causing runs to become trapped in local maxima. Based on these structural limitations we propose a different tree representation, AppGP, which we hope will avoid this problem in some cases. In this paper, we describe this representation, and compare its performance to the performance of standard GP on a suite of test problems. We find that on all of the test problems, AppGP does no worse than standard GP, and in several it does considerably better, suggesting that the representation warrants further study.

Original languageEnglish (US)
Number of pages7
StatePublished - 1999
Event1999 Congress on Evolutionary Computation, CEC 1999 - Washington, DC, United States
Duration: Jul 6 1999Jul 9 1999


Other1999 Congress on Evolutionary Computation, CEC 1999
Country/TerritoryUnited States
CityWashington, DC


Dive into the research topics of 'AppGP: An alternative structural representation for GP'. Together they form a unique fingerprint.

Cite this