TY - JOUR
T1 - Antimicrobial resistance-conferring plasmids with similarity to virulence plasmids from avian pathogenic Escherichia coli strains in Salmonella enterica serovar Kentucky isolates from poultry
AU - Fricke, W. Florian
AU - McDermott, Patrick F.
AU - Mammel, Mark K.
AU - Zhao, Shaohua
AU - Johnson, Timothy J.
AU - Rasko, David A.
AU - Fedorka-Cray, Paula J.
AU - Pedroso, Adriana
AU - Whichard, Jean M.
AU - LeClerc, J. Eugene
AU - White, David G.
AU - Cebula, Thomas A.
AU - Ravel, Jacques
PY - 2009/9
Y1 - 2009/9
N2 - Salmonella enterica, a leading cause of food-borne gastroenteritis worldwide, may be found in any raw food of animal, vegetable, or fruit origin. Salmonella serovars differ in distribution, virulence, and host specificity. Salmonella enterica serovar Kentucky, though often found in the food supply, is less commonly isolated from ill humans. The multidrug-resistant isolate S. Kentucky CVM29188, isolated from a chicken breast sample in 2003, contains three plasmids (146,811 bp, 101,461 bp, and 46,121 bp), two of which carry resistance determinants (pCVM29188-146 [strAB and tetRA] and pCVM29188-101 [bla CMY-2 and sugE]). Both resistance plasmids were transferable by conjugation, alone or in combination, to S. Kentucky, Salmonella enterica serovar Newport, and Escherichia coli recipients. pCVM29188-146 shares a highly conserved plasmid backbone of 106 kb (>90% nucleotide identity) with two virulence plasmids from avian pathogenic Escherichia coli strains (pAPEC-O1-ColBM and pAPEC-O2-ColV). Shared avian pathogenic E. coli (APEC) virulence factors include iutA iucABCD, sitABCD, etsABC, iss, and iroBCDEN. PCR analyses of recent (1997 to 2005) S. Kentucky isolates from food animal, retail meat, and human sources revealed that 172 (60%) contained similar APEC-like plasmid backbones. Notably, though rare in human- and cattle-derived isolates, this plasmid backbone was found at a high frequency (50 to 100%) among S. Kentucky isolates from chickens within the same time span. Ninety-four percent of the APEC-positive isolates showed resistance to tetracycline and streptomycin. Together, our findings of a resistance-conferring APEC virulence plasmid in a poultry-derived S. Kentucky isolate and of similar resistance/virulence plasmids in most recent S. Kentucky isolates from chickens and, to lesser degree, from humans and cattle highlight the need for additional research in order to examine the prevalence and spread of combined virulence and resistance plasmids in bacteria in agricultural, environmental, and clinical settings.
AB - Salmonella enterica, a leading cause of food-borne gastroenteritis worldwide, may be found in any raw food of animal, vegetable, or fruit origin. Salmonella serovars differ in distribution, virulence, and host specificity. Salmonella enterica serovar Kentucky, though often found in the food supply, is less commonly isolated from ill humans. The multidrug-resistant isolate S. Kentucky CVM29188, isolated from a chicken breast sample in 2003, contains three plasmids (146,811 bp, 101,461 bp, and 46,121 bp), two of which carry resistance determinants (pCVM29188-146 [strAB and tetRA] and pCVM29188-101 [bla CMY-2 and sugE]). Both resistance plasmids were transferable by conjugation, alone or in combination, to S. Kentucky, Salmonella enterica serovar Newport, and Escherichia coli recipients. pCVM29188-146 shares a highly conserved plasmid backbone of 106 kb (>90% nucleotide identity) with two virulence plasmids from avian pathogenic Escherichia coli strains (pAPEC-O1-ColBM and pAPEC-O2-ColV). Shared avian pathogenic E. coli (APEC) virulence factors include iutA iucABCD, sitABCD, etsABC, iss, and iroBCDEN. PCR analyses of recent (1997 to 2005) S. Kentucky isolates from food animal, retail meat, and human sources revealed that 172 (60%) contained similar APEC-like plasmid backbones. Notably, though rare in human- and cattle-derived isolates, this plasmid backbone was found at a high frequency (50 to 100%) among S. Kentucky isolates from chickens within the same time span. Ninety-four percent of the APEC-positive isolates showed resistance to tetracycline and streptomycin. Together, our findings of a resistance-conferring APEC virulence plasmid in a poultry-derived S. Kentucky isolate and of similar resistance/virulence plasmids in most recent S. Kentucky isolates from chickens and, to lesser degree, from humans and cattle highlight the need for additional research in order to examine the prevalence and spread of combined virulence and resistance plasmids in bacteria in agricultural, environmental, and clinical settings.
UR - http://www.scopus.com/inward/record.url?scp=70149099368&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70149099368&partnerID=8YFLogxK
U2 - 10.1128/AEM.00786-09
DO - 10.1128/AEM.00786-09
M3 - Article
C2 - 19648374
AN - SCOPUS:70149099368
SN - 0099-2240
VL - 75
SP - 5963
EP - 5971
JO - Applied and environmental microbiology
JF - Applied and environmental microbiology
IS - 18
ER -