Antibody escape by polyomavirus capsid mutation facilitates neurovirulence

Matthew D. Lauver, Daniel J. Goetschius, Colleen S. Netherby-Winslow, Katelyn N. Ayers, Ge Jin, Daniel G. Haas, Elizabeth L. Frost, Sung Hyun Cho, Carol M. Bator, Stephanie M. Bywaters, Neil D. Christensen, Susan Hafenstein, Aron E. Lukacher

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

JCPyV polyomavirus, a member of the human virome, causes Progressive Multifocal Leukoencephalopathy (PML), an oft-fatal demyelinating brain disease in individuals receiving immunomodulatory therapies. Mutations in the major viral capsid protein, VP1, are common in JCPyV from PML patients (JCPyV-PML) but whether they confer neurovirulence or escape from virus-neutralizing antibody (nAb) in vivo is unknown. A mouse polyomavirus (MuPyV) with a sequence-equivalent JCPyV-PML VP1 mutation replicated poorly in the kidney, a major reservoir for JCPyV persistence, but retained the CNS infectivity, cell tropism, and neuropathology of the parental virus. This mutation rendered MuPyV resistant to a monoclonal Ab (mAb), whose specificity overlapped the endogenous anti-VP1 response. Using cryo EM and a custom sub-particle refinement approach, we resolved an MuPyV:Fab complex map to 3.2 Å resolution. The structure revealed the mechanism of mAb evasion. Our findings demonstrate convergence between nAb evasion and CNS neurovirulence in vivo by a frequent JCPyV-PML VP1 mutation.

Original languageEnglish (US)
Pages (from-to)1-68
Number of pages68
JournaleLife
Volume9
DOIs
StatePublished - Sep 2020
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2020, eLife Sciences Publications Ltd. All rights reserved.

Fingerprint

Dive into the research topics of 'Antibody escape by polyomavirus capsid mutation facilitates neurovirulence'. Together they form a unique fingerprint.

Cite this