Anomalous unblocking temperatures, viscosity and frequency-dependent susceptibility in the chemically-remagnetized Trenton limestone

Mike Jackson, Horst Ulrich Worm

Research output: Contribution to journalArticlepeer-review

19 Scopus citations


Chemical remagnetization of many carbonate rock units occurred by diagenetic alteration of iron sulfide precursors and by authigenesis of fine-grained magnetite, which can commonly be recognized by a distinctive set of rock-magnetic attributes. These carbonates also typically exhibit anomalously high unblocking temperatures for recent thermoviscous components that have overprinted the characteristics chemical remanence. Recent work has shown that departures from Néel theory (as applied in the model of Pullaiah et al.) can generally be attributed to VRM carried by multidomain particles, to which the theory does not apply. In the remagnetized carbonates, however, rock-magnetic data all point to an overwhelming dominance of fine superparamagnetic and stable single-domain particles. Therefore we explore possible alternative causes for the anomalous unblocking temperatures, including maghemitization and magnetocrystalline rather than shape anisotropy. New blocking-unblocking models for these cases, however, fail to match the observed behavior, leading to the conclusion that the anomalous unblocking temperatures are indeed probably attributable to multidomain carriers. A possible alternative explanation is an increase in coercivity due to maghemitization of single-domain particles after acquisition of the viscous overprint, causing a significant increase in their unblocking temperatures. New frequency-dependent susceptibility measurements at low temperatures allow us to focus on the time-temperature behavior of the particles at the superparamagnetic-stable single-domain threshold, and we find that these do closely follow the presictions of Néel theory, as formulated in the models of Pullaiah et al. and Walton-Middleton-Schmidt.

Original languageEnglish (US)
Pages (from-to)27-42
Number of pages16
JournalPhysics of the Earth and Planetary Interiors
Issue number1-2
StatePublished - 2001

Bibliographical note

Funding Information:
We thank Phil Schmidt and Randy Enkin for insightful reviews that helped us clarify the logic and presentation of this paper, and David Dunlop for a variety of helpful suggestions. The Institute for Rock Magnetism is supported by a Grant from the Instruments and Facilities Program, Earth Science Division, the National Science Foundation. This is IRM Contribution No. 00-11.

Copyright 2017 Elsevier B.V., All rights reserved.


  • Chemical remanent magnetization
  • Néel theory
  • Trenton limestone


Dive into the research topics of 'Anomalous unblocking temperatures, viscosity and frequency-dependent susceptibility in the chemically-remagnetized Trenton limestone'. Together they form a unique fingerprint.

Cite this