Anomalous behaviors during infiltration into heterogeneous porous media

F. D.A. Aarão Reis, D. Bolster, V. R. Voller

Research output: Contribution to journalArticlepeer-review

13 Scopus citations


Flow and transport in heterogeneous porous media often exhibit anomalous behavior. A physical analog example is the uni-directional infiltration of a viscous liquid into a horizontal oriented Hele-Shaw cell containing through thickness flow obstacles; a system designed to mimic a gravel/sand medium with impervious inclusions. When there are no obstacles present or the obstacles form a multi-repeating pattern, the change of the length of infiltration F with time t tends to follow a Fickian like scaling, F∼t[Formula presented]. In the presence of obstacle fields laid out as Sierpinski carpet fractals, infiltration is anomalous, i.e., F ∼ tn, n ≠ 1/2. Here, we study infiltration into such Hele-Shaw cells. First we investigate infiltration into a square cell containing one fractal carpet and make the observation that it is possible to generate both sub (n < 1/2) and super (n > 1/2) diffusive behaviors within identical heterogeneity configurations. We show that this can be explained in terms of a scaling analysis developed from results of random-walk simulations in fractal obstacles; a result indicating that the nature of the domain boundary controls the exponent n of the resulting anomalous transport. Further, we investigate infiltration into a rectangular cell containing several repeats of a given Sierpinski carpet. At very early times, before the liquid encounters any obstacles, the infiltration is Fickian. When the liquid encounters the first (smallest scale) obstacle the infiltration sharply transitions to sub-diffusive. Subsequently, around the time where the liquid has sampled all of the heterogeneity length scales in the system, there is a rapid transition back to Fickian behavior. An explanation for this second transition is obtained by developing a simplified infiltration model based on the definition of a representative averaged hydraulic conductivity.

Original languageEnglish (US)
Pages (from-to)180-188
Number of pages9
JournalAdvances in Water Resources
StatePublished - Mar 2018

Bibliographical note

Funding Information:
VRV acknowledge support from the National Science Foundation through Grant EAR-1318593 , Generalized Transport Models in Earth Surface Dynamics. FDAAR was partially supported by an MTS visiting professorship, provided by the Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, and by Brazilian agencies CNPq ( 304766/2014-3 ) and Faperj ( E-26/202941/2015 ). We also appreciate significant discussion with colleagues Kimberly Hill, Mark Meerschaert, and Chris Paola. In addition we acknowledge the insight and suggestions provided by the reviewers.


  • Anomalous transport
  • Fractal dimension
  • Infiltration


Dive into the research topics of 'Anomalous behaviors during infiltration into heterogeneous porous media'. Together they form a unique fingerprint.

Cite this