Abstract
To explain the frequency and distribution of heteromorphic sex chromosomes in the lizard genus Anolis, we compared the relative roles of sex chromosome conservation versus turnover of sex-determining mechanisms. We used model-based comparative methods to reconstruct karyotype evolution and the presence of heteromorphic sex chromosomes onto a newly generated Anolis phylogeny. We found that heteromorphic sex chromosomes evolved multiple times in the genus. Fluorescent in situ hybridization (FISH) of repetitive DNA showed variable rates of Y chromosome degeneration among Anolis species and identified previously undetected, homomorphic sex chromosomes in two species. We confirmed homology of sex chromosomes in the genus by performing FISH of an X-linked bacterial artificial chromosome (BAC) and quantitative PCR of X-linked genes in multiple Anolis species sampled across the phylogeny. Taken together, these results are consistent with long-term conservation of sex chromosomes in the group. Our results pave the way to address additional questions related to Anolis sex chromosome evolution and describe a conceptual framework that can be used to evaluate the origins and evolution of heteromorphic sex chromosomes in other clades.
Original language | English (US) |
---|---|
Pages (from-to) | 1027-1041 |
Number of pages | 15 |
Journal | Evolution |
Volume | 68 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2014 |
Keywords
- Cytogenetics
- Homology
- Phylogeny
- Reptile
- Sex determination
- X chromosome