TY - JOUR
T1 - Androgen Receptor Splice Variants in the Era of Enzalutamide and Abiraterone
AU - Nakazawa, Mary
AU - Antonarakis, Emmanuel S.
AU - Luo, Jun
N1 - Publisher Copyright:
© 2014, Springer Science+Business Media New York.
PY - 2014/10/1
Y1 - 2014/10/1
N2 - The FDA approvals of enzalutamide and abiraterone have rapidly changed the clinical landscape of prostate cancer treatment. Both drugs were designed to further suppress androgen receptor (AR) signaling, which is restored following first-line androgen deprivation therapies. Resistance to enzalutamide and abiraterone, however, is again marked by a return of AR signaling, indicating a remarkable “addiction” of prostate cancer cells to the AR pathway. Several mechanisms of castration resistance have been uncovered in the past decades, featuring a wide spectrum of molecular alterations that may explain sustained AR signaling in castration-resistant prostate cancers (CRPC). Among these, the androgen receptor splice variants (AR-Vs), particularly variant 7 (AR-V7), have been implicated in resistance to enzalutamide and abiraterone in preclinical studies, and they cannot be targeted by currently available AR-directed drugs. Drug development for AR-V-associated CRPC may therefore be necessary to augment the preexisting treatment repertoire. In this mini-review, we will discuss general mechanisms of resistance to AR-directed therapies, with a focus on the role of androgen receptor splice variants in the new era of treating advanced prostate cancer with enzalutamide and abiraterone.
AB - The FDA approvals of enzalutamide and abiraterone have rapidly changed the clinical landscape of prostate cancer treatment. Both drugs were designed to further suppress androgen receptor (AR) signaling, which is restored following first-line androgen deprivation therapies. Resistance to enzalutamide and abiraterone, however, is again marked by a return of AR signaling, indicating a remarkable “addiction” of prostate cancer cells to the AR pathway. Several mechanisms of castration resistance have been uncovered in the past decades, featuring a wide spectrum of molecular alterations that may explain sustained AR signaling in castration-resistant prostate cancers (CRPC). Among these, the androgen receptor splice variants (AR-Vs), particularly variant 7 (AR-V7), have been implicated in resistance to enzalutamide and abiraterone in preclinical studies, and they cannot be targeted by currently available AR-directed drugs. Drug development for AR-V-associated CRPC may therefore be necessary to augment the preexisting treatment repertoire. In this mini-review, we will discuss general mechanisms of resistance to AR-directed therapies, with a focus on the role of androgen receptor splice variants in the new era of treating advanced prostate cancer with enzalutamide and abiraterone.
UR - http://www.scopus.com/inward/record.url?scp=84907083697&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84907083697&partnerID=8YFLogxK
U2 - 10.1007/s12672-014-0190-1
DO - 10.1007/s12672-014-0190-1
M3 - Review article
C2 - 25048254
AN - SCOPUS:84907083697
SN - 1868-8497
VL - 5
SP - 265
EP - 273
JO - Hormones and Cancer
JF - Hormones and Cancer
IS - 5
ER -