Ancestral genetic variation in phenotypic plasticity underlies rapid evolutionary changes in resurrected populations of waterfleas

J.A. Landy, A. Oschmann, S.B. Munch, M.R. Walsh

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

The role of phenotypic plasticity in adaptive evolution has been debated for decades. This is because the strength of natural selection is dependent on the direction and magnitude of phenotypic responses to environmental signals. Therefore, the connection between plasticity and adaptation will depend on the patterns of plasticity harbored by ancestral populations before a change in the environment. Yet few studies have directly assessed ancestral variation in plasticity and tracked phenotypic changes over time. Here we resurrected historic propagules of Daphnia spanning multiple species and lakes in Wisconsin following the invasion and proliferation of a novel predator (spiny waterflea, Bythotrephes longimanus). This approach revealed extensive genetic variation in predator-induced plasticity in ancestral populations of Daphnia. It is unlikely that the standing patterns of plasticity shielded Daphnia from selection to permit long-term coexistence with a novel predator. Instead, this variation in plasticity provided the raw materials for Bythotrephes-mediated selection to drive rapid shifts in Daphnia behavior and life history. Surprisingly, there was little evidence for the evolution of trait plasticity as genetic variation in plasticity was maintained in the face of a novel predator. Such results provide insight into the link between plasticity and adaptation and highlight the importance of quantifying genetic variation in plasticity when evaluating the drivers of evolutionary change in the wild. © 2020 National Academy of Sciences. All rights reserved.
Original languageEnglish (US)
Pages (from-to)32535-32544
Number of pages10
JournalProceedings of the National Academy of Sciences of the United States of America
Volume117
Issue number51
DOIs
StatePublished - Dec 22 2020

Bibliographical note

Export Date: 23 January 2021

Keywords

  • Behavior
  • Bythotrephes
  • Life history evolution
  • Local adaptation
  • Species invasion

Continental Scientific Drilling Facility tags

  • MAVS

PubMed: MeSH publication types

  • Journal Article
  • Research Support, U.S. Gov't, Non-P.H.S.

Fingerprint

Dive into the research topics of 'Ancestral genetic variation in phenotypic plasticity underlies rapid evolutionary changes in resurrected populations of waterfleas'. Together they form a unique fingerprint.

Cite this