Abstract
Traditional methods that test for electromigration (EM) failure in multisegment interconnects, over the lifespan of an IC, are based on the use of the Blech criterion, followed by Black’s equation. Such methods analyze each segment independently, but are well known to be inaccurate due to stress buildup over multiple segments. This paper introduces the new concept of boundary reflections of stress flow that ascribes a physical (wave-like) interpretation to the transient stress behavior in a finite multisegment line. This can provide a framework for deriving analytical expressions of transient EM stress for lines with any number of segments, which can also be tailored to include the appropriate number of terms for any desired level of accuracy. The proposed method is shown to have excellent accuracy, through evaluations against the FEM solver COMSOL, as well as scalability, through its application on large power grid benchmarks.
Original language | English (US) |
---|---|
Title of host publication | 2021 40th IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2021 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781665445078 |
DOIs | |
State | Published - 2021 |
Event | 40th IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2021 - Munich, Germany Duration: Nov 1 2021 → Nov 4 2021 |
Publication series
Name | IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD |
---|---|
Volume | 2021-November |
ISSN (Print) | 1092-3152 |
Conference
Conference | 40th IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2021 |
---|---|
Country/Territory | Germany |
City | Munich |
Period | 11/1/21 → 11/4/21 |
Bibliographical note
Funding Information:This work was supported in part by the NSF under award CCF-1714805 and by the DARPA IDEA program, and by the Louise Dosdall Fellowship. The work of the third author was supported in part by a Scholar grant from the Fulbright Foundation, Greece.
Publisher Copyright:
© 2021 IEEE.