Analytical methods for stable isotope labeling to elucidate rapid auxin kinetics in Arabidopsis thaliana

Qian Tang, Molly Tillmann, Jerry D. Cohen

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The phytohormone auxin plays a critical role in plant growth and development. Despite significant progress in elucidating metabolic pathways of the primary bioactive auxin, indole-3- acetic acid (IAA), over the past few decades, key components such as intermediates and enzymes have not been fully characterized, and the dynamic regulation of IAA metabolism in response to environmental signals has not been completely revealed. In this study, we established a protocol employing a highly sensitive liquid chromatography-mass spectrometry (LC-MS) instrumentation and a rapid stable isotope labeling approach. We treated Arabidopsis seedlings with two stable isotope labeled precursors ([13C6]anthranilate and [13C8, 15N1]indole) and monitored the label incorporation into proposed indolic compounds involved in IAA biosynthetic pathways. This Stable Isotope Labeled Kinetics (SILK) method allowed us to trace the turnover rates of IAA pathway precursors and product concurrently with a time scale of seconds to minutes. By measuring the entire pathways over time and using different isotopic tracer techniques, we demonstrated that these methods offer more detailed information about this complex interacting network of IAA biosynthesis, and should prove to be useful for studying auxin metabolic network in vivo in a variety of plant tissues and under different environmental conditions.

Original languageEnglish (US)
Article numbere0303992
JournalPloS one
Volume19
Issue number5 May
DOIs
StatePublished - May 2024

Bibliographical note

Publisher Copyright:
© 2024 Tang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'Analytical methods for stable isotope labeling to elucidate rapid auxin kinetics in Arabidopsis thaliana'. Together they form a unique fingerprint.

Cite this