TY - GEN
T1 - Analysis of rovibrational relaxation in nitrogen via direct atomic simulation
AU - Valentini, Paolo
AU - Norman, Paul
AU - Zhang, Chonglin
AU - Schwartzentruber, Thomas E.
PY - 2014
Y1 - 2014
N2 - Pure Molecular Dynamics (MD) and Classical Trajectory Calculations (CTC) Direct Simulation Monte Carlo (DSMC) are used to analyze the rovibrational behavior of molecular nitrogen for temperatures greater than 4,000 K. Both techniques are shown to produce statistically identical results at the conditions of interest here. Furthermore, they solely rely on the specification of a potential energy surface (PES). In this work, we used the site-site Ling-Rigby potential, and modeled the N-N bond either as a harmonic spring or an anharmonic spring (for bound states) or with the Morse potential (to model bond breaking). Selected preliminary results, obtained with a global fit of a quantum-chemistry PES, are also included. We show that the Ling-Rigby molecular model (i) recovers the shear viscosity (obtained from equilibrium pure MD Green-Kubo calculations) of molecular nitrogen over a wide range of temperatures, up to dissociation; (ii) predicts well the near-equilibrium rotational relaxation behavior of N2; (iii) reproduces vibrational relaxation times in excellent accordance with the Millikan-White correlation and previous semiclassical trajectory calculations in the low temperature range, i.e., between 4,000 K and 10,000 K. By simulating isothermal relaxations in a periodic box, we found that the traditional two-temperature model assumptions become invalid at high temperatures (> 10, 000 K), due to a significant coupling between rotational and vibrational modes for bound states. This led us to add a modification to both the Jeans and the Landau-Teller equations to include a coupling term, essentially described by an additional relaxation time for internal energy equilibration. The model thus obtained was parametrized by fitting temperature histories obtained with molecular-level calculations. The degree of anharmonicity of the N-N bond determines the strength of the rovibrational coupling, with possible implication on rovibration/chemistry interaction at the onset of N2 dissociation. Initial results for vibrational relaxation times are also obtained with the quantum-chemistry based PES of Paukku and co-workers in the low temperature range (< 10, 000 K) and were found to agree well with the experimental data. Although the bound assumption is largely unrealistic under equilibrium conditions at temperatures above about 10,000 K, high-temperature extrapolations are nonetheless very important for flows characterized by extreme nonequilibrium. This is demonstrated through the direct MD simulation of a reflected shock wave in dissociating N2.
AB - Pure Molecular Dynamics (MD) and Classical Trajectory Calculations (CTC) Direct Simulation Monte Carlo (DSMC) are used to analyze the rovibrational behavior of molecular nitrogen for temperatures greater than 4,000 K. Both techniques are shown to produce statistically identical results at the conditions of interest here. Furthermore, they solely rely on the specification of a potential energy surface (PES). In this work, we used the site-site Ling-Rigby potential, and modeled the N-N bond either as a harmonic spring or an anharmonic spring (for bound states) or with the Morse potential (to model bond breaking). Selected preliminary results, obtained with a global fit of a quantum-chemistry PES, are also included. We show that the Ling-Rigby molecular model (i) recovers the shear viscosity (obtained from equilibrium pure MD Green-Kubo calculations) of molecular nitrogen over a wide range of temperatures, up to dissociation; (ii) predicts well the near-equilibrium rotational relaxation behavior of N2; (iii) reproduces vibrational relaxation times in excellent accordance with the Millikan-White correlation and previous semiclassical trajectory calculations in the low temperature range, i.e., between 4,000 K and 10,000 K. By simulating isothermal relaxations in a periodic box, we found that the traditional two-temperature model assumptions become invalid at high temperatures (> 10, 000 K), due to a significant coupling between rotational and vibrational modes for bound states. This led us to add a modification to both the Jeans and the Landau-Teller equations to include a coupling term, essentially described by an additional relaxation time for internal energy equilibration. The model thus obtained was parametrized by fitting temperature histories obtained with molecular-level calculations. The degree of anharmonicity of the N-N bond determines the strength of the rovibrational coupling, with possible implication on rovibration/chemistry interaction at the onset of N2 dissociation. Initial results for vibrational relaxation times are also obtained with the quantum-chemistry based PES of Paukku and co-workers in the low temperature range (< 10, 000 K) and were found to agree well with the experimental data. Although the bound assumption is largely unrealistic under equilibrium conditions at temperatures above about 10,000 K, high-temperature extrapolations are nonetheless very important for flows characterized by extreme nonequilibrium. This is demonstrated through the direct MD simulation of a reflected shock wave in dissociating N2.
UR - http://www.scopus.com/inward/record.url?scp=85088342251&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85088342251&partnerID=8YFLogxK
U2 - 10.2514/6.2014-1079
DO - 10.2514/6.2014-1079
M3 - Conference contribution
AN - SCOPUS:85088342251
SN - 9781624102561
T3 - 52nd AIAA Aerospace Sciences Meeting - AIAA Science and Technology Forum and Exposition, SciTech 2014
BT - 52nd AIAA Aerospace Sciences Meeting - AIAA Science and Technology Forum and Exposition, SciTech 2014
PB - American Institute of Aeronautics and Astronautics Inc.
T2 - 52nd AIAA Aerospace Sciences Meeting - AIAA Science and Technology Forum and Exposition, SciTech 2014
Y2 - 13 January 2014 through 17 January 2014
ER -