Analysis of geographic location and pathways for influenza A virus infection of commercial upland game bird and conventional poultry farms in the United States of America

Research output: Contribution to journalArticle

Abstract

Background: Avian influenza (AI) is an infectious viral disease that affects several species and has zoonotic potential. Due to its associated health and economic repercussions, minimizing AI outbreaks is important. However, most control measures are generic and mostly target pathways important for the conventional poultry farms producing chickens, turkeys, and eggs and may not target other pathways that may be specific to the upland game bird sector. The goal of this study is to provide evidence to support the development of novel strategies for sector-specific AI control by comparing and contrasting practices and potential pathways for spread in upland game bird farms with those for conventional poultry farms in the United States. Farm practices and processes, seasonality of activities, geographic location and inter-farm distance were analyzed across the sectors. All the identified differences were framed and discussed in the context of their associated pathways for virus introduction into the farm and subsequent between-farm spread. Results: Differences stemming from production systems and seasonality, inter-farm distance and farm densities were evident and these could influence both fomite-mediated and local-area spread risks. Upland game bird farms operate under a single, independent owner rather than being contracted with or owned by a company with other farms as is the case with conventional poultry. The seasonal marketing of upland game birds, largely driven by hunting seasons, implies that movements are seasonal and customer-vendor dynamics vary between industry groups. Farm location analysis revealed that, on average, an upland game bird premises was 15.42 km away from the nearest neighboring premises with birds compared to 3.74 km for turkey premises. Compared to turkey premises, the average poultry farm density in a radius of 10 km of an upland game bird premises was less than a half, and turkey premises were 3.8 times (43.5% compared with 11.5%) more likely to fall within a control area during the 2015 Minnesota outbreak. Conclusions: We conclude that the existing differences in the seasonality of production, isolated geographic location and epidemiological seclusion of farms influence AI spread dynamics and therefore disease control measures should be informed by these and other factors to achieve success.

Original languageEnglish (US)
Article number147
JournalBMC Veterinary Research
Volume15
Issue number1
DOIs
StatePublished - May 14 2019

Fingerprint

game birds
Geographic Locations
Influenza A virus
Virus Diseases
Poultry
Birds
poultry
highlands
farms
infection
Influenza in Birds
avian influenza
Farms
Disease Outbreaks
control methods
Fomites
fomites
Satellite Viruses
Zoonoses
Marketing

Keywords

  • Biosecurity
  • Epidemiological contacts
  • Infection pathways
  • Influenza a virus
  • Upland game birds

PubMed: MeSH publication types

  • Journal Article

Cite this

@article{40d9142cc3df4c7b8d317e3178f7bb42,
title = "Analysis of geographic location and pathways for influenza A virus infection of commercial upland game bird and conventional poultry farms in the United States of America",
abstract = "Background: Avian influenza (AI) is an infectious viral disease that affects several species and has zoonotic potential. Due to its associated health and economic repercussions, minimizing AI outbreaks is important. However, most control measures are generic and mostly target pathways important for the conventional poultry farms producing chickens, turkeys, and eggs and may not target other pathways that may be specific to the upland game bird sector. The goal of this study is to provide evidence to support the development of novel strategies for sector-specific AI control by comparing and contrasting practices and potential pathways for spread in upland game bird farms with those for conventional poultry farms in the United States. Farm practices and processes, seasonality of activities, geographic location and inter-farm distance were analyzed across the sectors. All the identified differences were framed and discussed in the context of their associated pathways for virus introduction into the farm and subsequent between-farm spread. Results: Differences stemming from production systems and seasonality, inter-farm distance and farm densities were evident and these could influence both fomite-mediated and local-area spread risks. Upland game bird farms operate under a single, independent owner rather than being contracted with or owned by a company with other farms as is the case with conventional poultry. The seasonal marketing of upland game birds, largely driven by hunting seasons, implies that movements are seasonal and customer-vendor dynamics vary between industry groups. Farm location analysis revealed that, on average, an upland game bird premises was 15.42 km away from the nearest neighboring premises with birds compared to 3.74 km for turkey premises. Compared to turkey premises, the average poultry farm density in a radius of 10 km of an upland game bird premises was less than a half, and turkey premises were 3.8 times (43.5{\%} compared with 11.5{\%}) more likely to fall within a control area during the 2015 Minnesota outbreak. Conclusions: We conclude that the existing differences in the seasonality of production, isolated geographic location and epidemiological seclusion of farms influence AI spread dynamics and therefore disease control measures should be informed by these and other factors to achieve success.",
keywords = "Biosecurity, Epidemiological contacts, Infection pathways, Influenza a virus, Upland game birds",
author = "Amos Ssematimba and Charles, {Kaitlyn M.} and Bonney, {Peter J.} and Sasidhar Malladi and Marie Culhane and Goldsmith, {Timothy J.} and Halvorson, {David A.} and Cardona, {Carol J.}",
year = "2019",
month = "5",
day = "14",
doi = "10.1186/s12917-019-1876-y",
language = "English (US)",
volume = "15",
journal = "BMC Veterinary Research",
issn = "1746-6148",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - Analysis of geographic location and pathways for influenza A virus infection of commercial upland game bird and conventional poultry farms in the United States of America

AU - Ssematimba, Amos

AU - Charles, Kaitlyn M.

AU - Bonney, Peter J.

AU - Malladi, Sasidhar

AU - Culhane, Marie

AU - Goldsmith, Timothy J.

AU - Halvorson, David A.

AU - Cardona, Carol J.

PY - 2019/5/14

Y1 - 2019/5/14

N2 - Background: Avian influenza (AI) is an infectious viral disease that affects several species and has zoonotic potential. Due to its associated health and economic repercussions, minimizing AI outbreaks is important. However, most control measures are generic and mostly target pathways important for the conventional poultry farms producing chickens, turkeys, and eggs and may not target other pathways that may be specific to the upland game bird sector. The goal of this study is to provide evidence to support the development of novel strategies for sector-specific AI control by comparing and contrasting practices and potential pathways for spread in upland game bird farms with those for conventional poultry farms in the United States. Farm practices and processes, seasonality of activities, geographic location and inter-farm distance were analyzed across the sectors. All the identified differences were framed and discussed in the context of their associated pathways for virus introduction into the farm and subsequent between-farm spread. Results: Differences stemming from production systems and seasonality, inter-farm distance and farm densities were evident and these could influence both fomite-mediated and local-area spread risks. Upland game bird farms operate under a single, independent owner rather than being contracted with or owned by a company with other farms as is the case with conventional poultry. The seasonal marketing of upland game birds, largely driven by hunting seasons, implies that movements are seasonal and customer-vendor dynamics vary between industry groups. Farm location analysis revealed that, on average, an upland game bird premises was 15.42 km away from the nearest neighboring premises with birds compared to 3.74 km for turkey premises. Compared to turkey premises, the average poultry farm density in a radius of 10 km of an upland game bird premises was less than a half, and turkey premises were 3.8 times (43.5% compared with 11.5%) more likely to fall within a control area during the 2015 Minnesota outbreak. Conclusions: We conclude that the existing differences in the seasonality of production, isolated geographic location and epidemiological seclusion of farms influence AI spread dynamics and therefore disease control measures should be informed by these and other factors to achieve success.

AB - Background: Avian influenza (AI) is an infectious viral disease that affects several species and has zoonotic potential. Due to its associated health and economic repercussions, minimizing AI outbreaks is important. However, most control measures are generic and mostly target pathways important for the conventional poultry farms producing chickens, turkeys, and eggs and may not target other pathways that may be specific to the upland game bird sector. The goal of this study is to provide evidence to support the development of novel strategies for sector-specific AI control by comparing and contrasting practices and potential pathways for spread in upland game bird farms with those for conventional poultry farms in the United States. Farm practices and processes, seasonality of activities, geographic location and inter-farm distance were analyzed across the sectors. All the identified differences were framed and discussed in the context of their associated pathways for virus introduction into the farm and subsequent between-farm spread. Results: Differences stemming from production systems and seasonality, inter-farm distance and farm densities were evident and these could influence both fomite-mediated and local-area spread risks. Upland game bird farms operate under a single, independent owner rather than being contracted with or owned by a company with other farms as is the case with conventional poultry. The seasonal marketing of upland game birds, largely driven by hunting seasons, implies that movements are seasonal and customer-vendor dynamics vary between industry groups. Farm location analysis revealed that, on average, an upland game bird premises was 15.42 km away from the nearest neighboring premises with birds compared to 3.74 km for turkey premises. Compared to turkey premises, the average poultry farm density in a radius of 10 km of an upland game bird premises was less than a half, and turkey premises were 3.8 times (43.5% compared with 11.5%) more likely to fall within a control area during the 2015 Minnesota outbreak. Conclusions: We conclude that the existing differences in the seasonality of production, isolated geographic location and epidemiological seclusion of farms influence AI spread dynamics and therefore disease control measures should be informed by these and other factors to achieve success.

KW - Biosecurity

KW - Epidemiological contacts

KW - Infection pathways

KW - Influenza a virus

KW - Upland game birds

UR - http://www.scopus.com/inward/record.url?scp=85065718028&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85065718028&partnerID=8YFLogxK

U2 - 10.1186/s12917-019-1876-y

DO - 10.1186/s12917-019-1876-y

M3 - Article

VL - 15

JO - BMC Veterinary Research

JF - BMC Veterinary Research

SN - 1746-6148

IS - 1

M1 - 147

ER -