Analysis of a hybrid PV/T concept based on wavelength selective films

Tejas U. Ulavi, Jane H. Davidson, Tim Hebrink

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations

Abstract

The technical performance of a non-tracking hybrid PV/T concept that uses a wavelength selective film is modeled. The wavelength selective film is coupled with a compound parabolic concentrator to reflect and concentrate the infrared portion of the solar spectrum onto a tubular absorber while transmitting the visible portion of the spectrum to an underlying thin-film photovoltaic module. The optical performance of the CPC/selective film is obtained through Monte Carlo Ray-Tracing. The CPC geometry is optimized for maximum total energy generation for a roof-top application. Applied to a rooftop in Phoenix, Arizona USA, the hybrid PV/T provides 20% more energy compared to a system of the same area with independent solar thermal and PV modules, but the increase is achieved at the expense of a decrease in the electrical efficiency from 8.8% to 5.8%.

Original languageEnglish (US)
Title of host publicationASME 2013 7th Int. Conf. on Energy Sustainability Collocated with the ASME 2013 Heat Transfer Summer Conf. and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology, ES 2013
DOIs
StatePublished - Dec 1 2013
EventASME 2013 7th International Conference on Energy Sustainability, ES 2013 Collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology - Minneapolis, MN, United States
Duration: Jul 14 2013Jul 19 2013

Publication series

NameASME 2013 7th Int. Conf. on Energy Sustainability Collocated with the ASME 2013 Heat Transfer Summer Conf. and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology, ES 2013

Other

OtherASME 2013 7th International Conference on Energy Sustainability, ES 2013 Collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
Country/TerritoryUnited States
CityMinneapolis, MN
Period7/14/137/19/13

Fingerprint

Dive into the research topics of 'Analysis of a hybrid PV/T concept based on wavelength selective films'. Together they form a unique fingerprint.

Cite this