Anaerobic Dehalogenation by Reduced Aqueous Biochars

Srinidhi Lokesh, Juhee Kim, Yuwei Zhou, Danping Wu, Bo Pan, Xilong Wang, Sebastian Behrens, Ching Hua Huang, Yu Yang

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


Dehalogenation is one of the most important reactions for eliminating trace organic pollutants in natural and engineering systems. This study investigated the dehalogenation of a model organohalogen compound, triclosan (TCS), by aqueous biochars (a-BCs) (<450 nm). We found that TCS can be anaerobically degraded by reduced a-BCs with a pseudo first-order degradation rate constant of 0.0011-0.011 h-1. The 288 h degradation fraction of TCS correlated significantly with the amount of a-BC-bound electrons (0.055 ± 0.00024 to 0.11 ± 0.0016 mol e-/mol C) available for donation after 24 h of pre-reduction by Shewanella putrefaciens CN32. Within the reduction period, the recovery of chlorine based on residual TCS and generated Cl- ranged from 73.6 to 85.2%, implying that a major fraction of TCS was fully dechlorinated, together with mass spectroscopic analysis of possible degradation byproducts. Least-squares numerical fitting, accounting for the reactions of hydroquinones/semiquinones in a-BCs with TCS and byproducts, can simulate the reaction kinetics well (R2 > 0.76) and suggest the first-step dechlorination as the rate-limiting step among the possible pathways. These results showcased that the reduced a-BCs can reductively degrade organohalogens with potential applications for wastewater treatment and groundwater remediation. While TCS was used as a model compound in this study, a-BC-based degradation can be likely applied to a range of redox-sensitive trace organic compounds.

Original languageEnglish (US)
Pages (from-to)15142-15150
Number of pages9
JournalEnvironmental Science and Technology
Issue number23
StatePublished - Dec 1 2020

Bibliographical note

Publisher Copyright:
© 2020 American Chemical Society. All rights reserved.


Dive into the research topics of 'Anaerobic Dehalogenation by Reduced Aqueous Biochars'. Together they form a unique fingerprint.

Cite this