An experimental investigation of transition as applied to low pressure turbine suction surface flows

Songgang Qiu, Terrence W. Simon

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Results are presented of an experimental study of separation and transition within the flow over the suction surface of a low-pressure turbine airfoil. Detailed velocity profiles, measured in the near-wall region with the hot-wire technique, and surface static pressure distributions are presented. Flow transition is documented using measured intermittency distributions in the attached boundary layer and within the separated shear layer. Cases for Reynolds numbers based on exit velocity and suction surface length of 50,000, 100,000, 200,000, and 300,000 under low Free Stream Turbulence Intensity (FSTI=0.5%), moderate-FSTI (2.5%), and high-FSTI (10%) we reported. Cases of FS1I=2.5%, which, due to wakes, are most representative of low-pressure turbine flows, are discussed in detail. Comparisons are made for cases of differing Reynolds numbers and FSTI values. Flow separation. with transition of the shear layer over the separation bubble, is observed for the lower-Re cases. Enhanced transport after flow transition reduces the separation bubble size and eventually accelerates the near-wall flow to attached boundary layer status. Elevated FSTI and increased Re promote earlier transition, smaller separation bubbles, and an increased possibility that the boundary layer will remain attached and transition as such. Models for intermittency distribution, transition onset location, and transition length are assessed.

Original languageEnglish (US)
Title of host publicationAircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791878682
DOIs
StatePublished - 1997
EventASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition, GT 1997 - Orlando, United States
Duration: Jun 2 1997Jun 5 1997

Publication series

NameProceedings of the ASME Turbo Expo
Volume1

Other

OtherASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition, GT 1997
CountryUnited States
CityOrlando
Period6/2/976/5/97

Fingerprint Dive into the research topics of 'An experimental investigation of transition as applied to low pressure turbine suction surface flows'. Together they form a unique fingerprint.

Cite this