An electron paramagnetic resonance study of skeletal muscle membrane fluidity in malignant hyperthermia

James M Ervasti, James R Mickelson, Scott M. Lewis, David D Thomas, Charles F. Louis

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Skeletal muscle sarcolemma (SL), transverse tubule (TT) and heavy sarcoplasmic reticulum (HSR) membranes were isolated from malignant hyperthermia susceptible (MHS) and normal pigs, and the rotational dynamics of lipid hydrocarbon chain motion was examined by electron paramagnetic resonance (EPR) spectroscopy. The stearic acid spin probe 16-SASL was incorporated into MHS and normal membranes and both the order parameter (S) and effective correlation time (τr) of probe motion were calculated from spectra recorded over the temperature range of 2 to 40°C. At any given temperature, TT membranes exhibited significantly greater values for both the S and τr of probe motion than did SL, which exhibited significantly greater values than did HSR membranes. The order of decreasing S and τr values for 16-SASL mobility correlated with the decreasing cholesterol content of these membranes (TT>SL>HSR), however there was no difference in the S or τr values for a given membrane fraction isolated from both MHS and normal muscle. Arrhenius plots of 16-SASL mobility in SL, TT and HSR were linear from 2 to 40°C, indicating no abrupt thermotropic change in the lipid hydrocarbon phase of any of the membrane types studied. Apparent activation energies (Ea), calculated from the Arrhenius plots, were similar for MHS and normal membranes derived from a given cellular location. However, the Ea of probe motion for TT membranes (2.3 ± 0.1 and 2.4 ± 0.1 kcal/mol/degree for MHS and normal, respectively) was significantly less than for SL (3.4 ± 0.4 and 2.9 ± 0.1 kcal/mol/degree for MHS and normal, respectively) which, in turn, was significantly less than the Ea for HSR (3.7 ± 0.1 and 3.7 ± 0.1 kcal/mol/degree for MHS and normal, respectively). Since 16-SASL motion was similar in MHS and normal membranes, we conclude that there is no evidence for a generalized membrane defect affecting lipid mobility in these MHS muscle membranes.

Original languageEnglish (US)
Pages (from-to)70-74
Number of pages5
JournalBBA - Biomembranes
Volume986
Issue number1
DOIs
StatePublished - Nov 17 1989

Fingerprint

Malignant Hyperthermia
Membrane Fluidity
Fluidity
Electron Spin Resonance Spectroscopy
Paramagnetic resonance
Muscle
Skeletal Muscle
Membranes
Sarcolemma
Sarcoplasmic Reticulum
Arrhenius plots
Hydrocarbons
Lipids
Muscles
Temperature
Spectrum Analysis
Swine
Activation energy

Keywords

  • ESR
  • Malignant hyperthermia
  • Membrane fluidity

Cite this

An electron paramagnetic resonance study of skeletal muscle membrane fluidity in malignant hyperthermia. / Ervasti, James M; Mickelson, James R; Lewis, Scott M.; Thomas, David D; Louis, Charles F.

In: BBA - Biomembranes, Vol. 986, No. 1, 17.11.1989, p. 70-74.

Research output: Contribution to journalArticle

@article{1bee9d4c35d14faaa56c383ff84c8e92,
title = "An electron paramagnetic resonance study of skeletal muscle membrane fluidity in malignant hyperthermia",
abstract = "Skeletal muscle sarcolemma (SL), transverse tubule (TT) and heavy sarcoplasmic reticulum (HSR) membranes were isolated from malignant hyperthermia susceptible (MHS) and normal pigs, and the rotational dynamics of lipid hydrocarbon chain motion was examined by electron paramagnetic resonance (EPR) spectroscopy. The stearic acid spin probe 16-SASL was incorporated into MHS and normal membranes and both the order parameter (S) and effective correlation time (τr) of probe motion were calculated from spectra recorded over the temperature range of 2 to 40°C. At any given temperature, TT membranes exhibited significantly greater values for both the S and τr of probe motion than did SL, which exhibited significantly greater values than did HSR membranes. The order of decreasing S and τr values for 16-SASL mobility correlated with the decreasing cholesterol content of these membranes (TT>SL>HSR), however there was no difference in the S or τr values for a given membrane fraction isolated from both MHS and normal muscle. Arrhenius plots of 16-SASL mobility in SL, TT and HSR were linear from 2 to 40°C, indicating no abrupt thermotropic change in the lipid hydrocarbon phase of any of the membrane types studied. Apparent activation energies (Ea), calculated from the Arrhenius plots, were similar for MHS and normal membranes derived from a given cellular location. However, the Ea of probe motion for TT membranes (2.3 ± 0.1 and 2.4 ± 0.1 kcal/mol/degree for MHS and normal, respectively) was significantly less than for SL (3.4 ± 0.4 and 2.9 ± 0.1 kcal/mol/degree for MHS and normal, respectively) which, in turn, was significantly less than the Ea for HSR (3.7 ± 0.1 and 3.7 ± 0.1 kcal/mol/degree for MHS and normal, respectively). Since 16-SASL motion was similar in MHS and normal membranes, we conclude that there is no evidence for a generalized membrane defect affecting lipid mobility in these MHS muscle membranes.",
keywords = "ESR, Malignant hyperthermia, Membrane fluidity",
author = "Ervasti, {James M} and Mickelson, {James R} and Lewis, {Scott M.} and Thomas, {David D} and Louis, {Charles F.}",
year = "1989",
month = "11",
day = "17",
doi = "10.1016/0005-2736(89)90273-3",
language = "English (US)",
volume = "986",
pages = "70--74",
journal = "Biochimica et Biophysica Acta - Biomembranes",
issn = "0005-2736",
publisher = "Elsevier",
number = "1",

}

TY - JOUR

T1 - An electron paramagnetic resonance study of skeletal muscle membrane fluidity in malignant hyperthermia

AU - Ervasti, James M

AU - Mickelson, James R

AU - Lewis, Scott M.

AU - Thomas, David D

AU - Louis, Charles F.

PY - 1989/11/17

Y1 - 1989/11/17

N2 - Skeletal muscle sarcolemma (SL), transverse tubule (TT) and heavy sarcoplasmic reticulum (HSR) membranes were isolated from malignant hyperthermia susceptible (MHS) and normal pigs, and the rotational dynamics of lipid hydrocarbon chain motion was examined by electron paramagnetic resonance (EPR) spectroscopy. The stearic acid spin probe 16-SASL was incorporated into MHS and normal membranes and both the order parameter (S) and effective correlation time (τr) of probe motion were calculated from spectra recorded over the temperature range of 2 to 40°C. At any given temperature, TT membranes exhibited significantly greater values for both the S and τr of probe motion than did SL, which exhibited significantly greater values than did HSR membranes. The order of decreasing S and τr values for 16-SASL mobility correlated with the decreasing cholesterol content of these membranes (TT>SL>HSR), however there was no difference in the S or τr values for a given membrane fraction isolated from both MHS and normal muscle. Arrhenius plots of 16-SASL mobility in SL, TT and HSR were linear from 2 to 40°C, indicating no abrupt thermotropic change in the lipid hydrocarbon phase of any of the membrane types studied. Apparent activation energies (Ea), calculated from the Arrhenius plots, were similar for MHS and normal membranes derived from a given cellular location. However, the Ea of probe motion for TT membranes (2.3 ± 0.1 and 2.4 ± 0.1 kcal/mol/degree for MHS and normal, respectively) was significantly less than for SL (3.4 ± 0.4 and 2.9 ± 0.1 kcal/mol/degree for MHS and normal, respectively) which, in turn, was significantly less than the Ea for HSR (3.7 ± 0.1 and 3.7 ± 0.1 kcal/mol/degree for MHS and normal, respectively). Since 16-SASL motion was similar in MHS and normal membranes, we conclude that there is no evidence for a generalized membrane defect affecting lipid mobility in these MHS muscle membranes.

AB - Skeletal muscle sarcolemma (SL), transverse tubule (TT) and heavy sarcoplasmic reticulum (HSR) membranes were isolated from malignant hyperthermia susceptible (MHS) and normal pigs, and the rotational dynamics of lipid hydrocarbon chain motion was examined by electron paramagnetic resonance (EPR) spectroscopy. The stearic acid spin probe 16-SASL was incorporated into MHS and normal membranes and both the order parameter (S) and effective correlation time (τr) of probe motion were calculated from spectra recorded over the temperature range of 2 to 40°C. At any given temperature, TT membranes exhibited significantly greater values for both the S and τr of probe motion than did SL, which exhibited significantly greater values than did HSR membranes. The order of decreasing S and τr values for 16-SASL mobility correlated with the decreasing cholesterol content of these membranes (TT>SL>HSR), however there was no difference in the S or τr values for a given membrane fraction isolated from both MHS and normal muscle. Arrhenius plots of 16-SASL mobility in SL, TT and HSR were linear from 2 to 40°C, indicating no abrupt thermotropic change in the lipid hydrocarbon phase of any of the membrane types studied. Apparent activation energies (Ea), calculated from the Arrhenius plots, were similar for MHS and normal membranes derived from a given cellular location. However, the Ea of probe motion for TT membranes (2.3 ± 0.1 and 2.4 ± 0.1 kcal/mol/degree for MHS and normal, respectively) was significantly less than for SL (3.4 ± 0.4 and 2.9 ± 0.1 kcal/mol/degree for MHS and normal, respectively) which, in turn, was significantly less than the Ea for HSR (3.7 ± 0.1 and 3.7 ± 0.1 kcal/mol/degree for MHS and normal, respectively). Since 16-SASL motion was similar in MHS and normal membranes, we conclude that there is no evidence for a generalized membrane defect affecting lipid mobility in these MHS muscle membranes.

KW - ESR

KW - Malignant hyperthermia

KW - Membrane fluidity

UR - http://www.scopus.com/inward/record.url?scp=0024453157&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0024453157&partnerID=8YFLogxK

U2 - 10.1016/0005-2736(89)90273-3

DO - 10.1016/0005-2736(89)90273-3

M3 - Article

C2 - 2554982

AN - SCOPUS:0024453157

VL - 986

SP - 70

EP - 74

JO - Biochimica et Biophysica Acta - Biomembranes

JF - Biochimica et Biophysica Acta - Biomembranes

SN - 0005-2736

IS - 1

ER -