TY - JOUR

T1 - An efficient implementation of numerical integration using logical computation on stochastic bit streams

AU - Qian, Weikang

AU - Wang, Chen

AU - Li, Peng

AU - Lilja, David J.

AU - Bazargan, Kia

AU - Riedel, Marc D.

PY - 2012/12/1

Y1 - 2012/12/1

N2 - Numerical integration is a widely used approach for computing an approximate result of a definite integral. Conventional digital implementations of numerical integration using binary radix encoding are costly in terms of hardware and have long computational delay. This work proposes a novel method for performing numerical integration based on the paradigm of logical computation on stochastic bit streams. In this paradigm, ordinary digital circuits are employed but they operate on stochastic bit streams instead of deterministic values; the signal value is encoded by the probability of obtaining a one versus a zero in the streams. With this type of computation, complex arithmetic operations can be implemented with very simple circuitry. However, typically, such stochastic implementations have long computational delay, since long bit streams are required to encode precise values. This paper proposes a stochastic design for numerical integration characterized by both small area and short delay-so, in contrast to previous applications, a win on both metrics. The design is based on mathematical analysis that demonstrates that the summation of a large number of terms in the numerical integration could lead to a significant delay reduction. An architecture is proposed for this task. Experiments confirm that the stochastic implementation has smaller area and shorter delay than conventional implementations.

AB - Numerical integration is a widely used approach for computing an approximate result of a definite integral. Conventional digital implementations of numerical integration using binary radix encoding are costly in terms of hardware and have long computational delay. This work proposes a novel method for performing numerical integration based on the paradigm of logical computation on stochastic bit streams. In this paradigm, ordinary digital circuits are employed but they operate on stochastic bit streams instead of deterministic values; the signal value is encoded by the probability of obtaining a one versus a zero in the streams. With this type of computation, complex arithmetic operations can be implemented with very simple circuitry. However, typically, such stochastic implementations have long computational delay, since long bit streams are required to encode precise values. This paper proposes a stochastic design for numerical integration characterized by both small area and short delay-so, in contrast to previous applications, a win on both metrics. The design is based on mathematical analysis that demonstrates that the summation of a large number of terms in the numerical integration could lead to a significant delay reduction. An architecture is proposed for this task. Experiments confirm that the stochastic implementation has smaller area and shorter delay than conventional implementations.

UR - http://www.scopus.com/inward/record.url?scp=84872292463&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84872292463&partnerID=8YFLogxK

M3 - Conference article

AN - SCOPUS:84872292463

SP - 156

EP - 162

JO - IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers

JF - IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers

SN - 1092-3152

M1 - 6386603

T2 - 2012 30th IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2012

Y2 - 5 November 2012 through 8 November 2012

ER -