Abstract
We present a new asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions - a leading-order elastic collision together with a lower-order interparticle collision. When the mean free path is small, numerically solving this equation is prohibitively expensive due to the stiff collision terms. Furthermore, since the equilibrium solution is a (zero-momentum) Fermi-Dirac distribution resulting from joint action of both collisions, the simple BGK penalization designed for the one-scale collision [10] cannot capture the correct energy-transport limit. This problem was addressed in [13], where a thresholded BGK penalization was introduced. Here we propose an alternative based on a splitting approach. It has the advantage of treating the collisions at different scales separately, hence is free of choosing threshold and easier to implement. Formal asymptotic analysis and numerical results validate the effciency and accuracy of the proposed scheme.
Original language | English (US) |
---|---|
Pages (from-to) | 707-723 |
Number of pages | 17 |
Journal | Kinetic and Related Models |
Volume | 8 |
Issue number | 4 |
DOIs | |
State | Published - 2015 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© American Institute of Mathematical Sciences.
Keywords
- Asymptotic-preserving scheme
- Energy-transport system
- Semiconductor boltzmann equation
- Splitting method