Amplifying and Leveraging Generated Force upon Heating and Cooling in SMA Knitted Actuators

Kevin Eschen, Rachael Granberry, Bradley Holschuh, Julianna Abel

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

This work reexamines traditional shape memory alloy (SMA) loading paths commonly used in SMA-based actuator applications and presents a novel, superimposed condition in which SMA generates substantial forces upon heating and cooling. This atypical effect, which is investigated with a textile-based actuator, was found to be prominent at the completion of material phase transformation, at which point thermal expansion/contraction became the dominant force-generating mechanism. We demonstrate that amplification of generated forces can be accomplished by varying the applied thermal load, applied structural strain, as well as actuator architecture. Specifically, we present SMA knitted actuators as an actuator architecture that increases the effect by aggregating SMA wires within a complex strain profile - effectively providing a larger operational window for the effect to propagate. The amplification of blocking forces through this novel operational procedure suggests reconsidering traditional blocking force design paradigms and opens untapped actuator application spaces, such as the highlighted medical and aerospace wearable technologies.

Original languageEnglish (US)
Pages (from-to)54155-54167
Number of pages13
JournalACS Applied Materials and Interfaces
Volume12
Issue number48
DOIs
StatePublished - Dec 2 2020

Bibliographical note

Funding Information:
This work was supported in part by a NASA Space Technology Research Fellowship (Grant #80NSSC17K0158), Minnesota’s Discovery, Research, and InnoVation Economy Robotics, Sensors, and Advanced Manufacturing (MnDRIVE RSAM) Initiative, and the University of Minnesota Office of the Vice President for Research UMII MnDRIVE Graduate Assistantship. Thank you to Kirstyn Johnson from NASA Johnson Space Center’s Crew Survival Lab as well as Amy Ross and Shane McFarland from the Advanced Spacesuit Lab for guidance on the astronaut compression garment concept and operation. Thank you for support from the University of Minnesota’s Wearable Technology Lab, specifically Heidi Woelfe, for coordinating time on the Instron machine. The authors thank Othmane Benafan and Santo Padula II from NASA Glenn Research Center for discussions related to the SMA material effects that may contribute to the behaviors described in this publication.

Publisher Copyright:
© 2020 American Chemical Society. All rights reserved.

Keywords

  • blocking force
  • knitted actuator
  • path-dependent
  • shape memory alloy
  • thermal expansion

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'Amplifying and Leveraging Generated Force upon Heating and Cooling in SMA Knitted Actuators'. Together they form a unique fingerprint.

Cite this