Amphipol-facilitated Elucidation of the Functional Tetrameric Complex of Full-length Cytochrome P450 CYP2B4 and NADPH-Cytochrome-P450 Oxidoreductase.

Shen Cheng

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Interactions of membrane-bound mammalian cytochromes P450 (CYPs) with NADPH-cytochrome P450 oxidoreductase (POR), which are required for metabolism of xenobiotics, are facilitated by membrane lipids. A variety of membrane mimetics, such as phospholipid liposomes and nanodiscs, have been used to simulate the membrane to form catalytically active CYP:POR complexes. However, the exact mechanism(s) of these interactions are unclear, due to the absence of structural information of full-length mammalian CYP:POR complexes in membranes. Herein we report the use of amphipols (APols) to form a fully functional, soluble, homogeneous preparation of full-length CYP:POR complexes amenable to biochemical and structural study. Incorporation of CYP2B4 and POR into APols resulted in a CYP2B4:POR complex with a stoichiometry of 1:1, which was fully functional in demethylating benzphetamine at a turnover rate of 37.7±2.2 min-1, with a coupling efficiency of 40%. Interestingly, the stable complex had a molecular weight (Mw) of 338±22 kDa determined by multiangle light scattering, suggestive of a tetrameric complex of 2CYP2B4:2POR embedded in one APol nanoparticle. Moreover, negative stain electron microscopy (EM) validated the homogeneity of the complex, and allowed us to generate a three-dimensional EM map and model consistent with the tetramer observed in solution. This first report of the full-length mammalian CYP:POR complex by transmission EM not only reveals the architecture that facilitates electron transfer, but also highlights a potential use of APols in biochemical and structural studies of functional CYP complexes with redox partners.
Original languageUndefined/Unknown
JournalThe Journal of biological chemistry
DOIs
StatePublished - Apr 8 2021

Cite this