Amino acid vinyl esters: A new monomer palette for degradable polycationic materials

Glen B. Thomas, Corinne E. Lipscomb, Mahesh K. Mahanthappa

Research output: Contribution to journalArticle

3 Scopus citations

Abstract

Toward the goal of developing degradable polycationic materials with tunable backbone charge densities and hydrophilicities, we report the optimized syntheses and polymerization activities of a series of N-Boc-protected amino acid O-vinyl ester (BAAVE) monomers derived from Boc-protected glycine, alanine, valine, and proline. The homopolymerization and copolymerization behaviors of these monomers under thermally initiated conventional free radical polymerization conditions are studied. By conducting copolymerizations of (N-tert-butoxycarbonyl)glycine vinyl ester (BGVE) with vinyl acetate (VAc) at various feed ratios and by analyzing the compositions of the resulting polymers produced at 88°C using 1,1′-azobis(cyclohexane-1-carbonitrile) (V-40) initiation, we find that the reactivity ratios are r BGVE = 1.61 ± 0.12 and r VAc = 0.82 ± 0.07. Treatment of poly(VAc-co-BAAVE) with neat CF 3COOH selectively unmasks the Boc-protected amine functionalities to furnish cationic poly(VAc-co- AAVE·CF 3COOH) copolymers. Alternatively, treatment of these random copolymers with methanolic HCl results in the complete hydrolysis of both the Boc-protecting groups as well as the acetate esters, enabling access to well-defined, hydrophilic, polycationic amino acid ester-functionalized poly(vinyl alcohol) materials.

Original languageEnglish (US)
Pages (from-to)741-750
Number of pages10
JournalPolymer Chemistry
Volume3
Issue number3
DOIs
StatePublished - Mar 1 2012

Fingerprint Dive into the research topics of 'Amino acid vinyl esters: A new monomer palette for degradable polycationic materials'. Together they form a unique fingerprint.

Cite this