Abstract
As COVID-19 pandemic has caused more than 24 million confirmed cases globally (as of August 28th, 2020), it is critical to slow down the spreading of SARS-CoV-2 to protect the healthcare system from overload. Wearing a respirator or a mask has been proven as an effective method to protect both the wearer and others, but commercially available respirators and masks should be reserved for healthcare workers under a currently desperate shortage. The use of alternative materials becomes an option for the general public to make the do-it-yourself (DIY) masks, with their efficacy seldom reported. In this study, we tested commercial respirators and masks, furnace filters, vacuum cleaner filters, and common household materials. We evaluated the materials’ fractional filtration efficiency and breathing resistance, which are primary factors affecting respiratory protection. To compare the efficiency-resistance tradeoff, the figure of merit of each tested common material was also calculated. Filter media with electrostatic charges (electret) is recommended due to its high efficiency with low flow resistance; multiple-layer household fabrics and sterilization wraps are acceptable materials; a coffee filter is inadvisable due to its low efficiency. The outcome of this study can not only offer guidance for the general public under the current pandemic but also suggest the appropriate alternative respiratory protection materials under heavy air pollution episodes.
Original language | English (US) |
---|---|
Pages (from-to) | 2581-2591 |
Number of pages | 11 |
Journal | Aerosol and Air Quality Research |
Volume | 20 |
Issue number | 12 |
DOIs | |
State | Published - 2020 |
Bibliographical note
Funding Information:We would like to thank the support of members of the Center for Filtration Research: 3M Corporation, Applied Materials, Inc., BASF Corporation, Boeing Company, Corning Co., China Yancheng Environmental Protection Science and Technology City, Cummins Filtration Inc., Donaldson Company, Inc., Entegris, Inc., Ford Motor Company, Guangxi WatYuan Filtration System Co., Ltd, LG Electronics Inc., MSP Corporation; Parker Hannifin, Samsung Electronics Co., Ltd., Xinxiang Shengda Filtration Technology Co., Ltd., TSI Inc., W. L. Gore & Associates, Inc., Shigematsu Works Co., Ltd., and the affiliate member National Institute for Occupational Safety and Health (NIOSH). We would like to acknowledge the fruitful discussion we had with Professor Emeritus Yasuo Kousaka, Osaka Prefecture University, Sakai, Osaka, Japan; and with Dr. Michel Pourprix, French Alternative Energies and Atomic Energy Commission (CEA), Grenoble, France.
Funding Information:
We would like to thank the support of members of the Center for Filtration Research: 3M Corporation, Applied Materials, Inc., BASF Corporation, Boeing Company, Corning Co., China Yancheng Environmental Protection Science and Technology City, Cummins Filtration Inc., Donaldson Company, Inc., Entegris, Inc., Ford Motor Company, Guangxi WatYuan Filtration System Co., Ltd, LG Electronics Inc., MSP Corporation; Parker Hannifin, Samsung Electronics Co., Ltd., Xinxiang Shengda Filtration Technology Co., Ltd., TSI Inc., W. L. Gore & Associates, Inc., Shigematsu Works Co., Ltd., and the affiliate member National Institute for Occupational Safety and Health (NIOSH).
Publisher Copyright:
© The Author(s).
Keywords
- Breathability
- Common material
- Fractional efficiency
- Mask
- Respirator