Altered gene expression during cold acclimation of spinach.

C. L. Guy, K. J. Niemi, R. Brambl

Research output: Contribution to journalArticlepeer-review

224 Scopus citations


Exposure of spinach (Spinacia oleracea L.) plants to a constant 5 degrees C induced a greater tolerance to extracellular freezing. The metabolic basis of this cold acclimation response in plants is not understood. In this study we tested the hypothesis that cold acclimation derives from altered gene transcription. We found that exposure of plants to low temperature resulted in a rapid and stable change in the translatable poly(A)+ RNA populations extracted from leaves, as determined by a cell-free in vitro translation assay. The initial appearance of mRNAs for two high molecular weight translation products correlated with an increase in freezing tolerance. Cold acclimation of plants for 8 days resulted in further qualitative changes in mRNA populations. At least four additional mRNAs increased in concentration upon continued exposure of spinach to 5 degrees C, whereas three other mRNAs present in 20 degrees C-grown leaves decreased. We also tested the possibility that the low temperature-induced mRNAs might encode heat shock proteins. We studied heat shock-induced protein synthesis by in vivo labeling techniques and found that spinach synthesized at least eight distinctive heat shock proteins during exposure to 40 degrees C. Most polypeptides induced by exposure to low temperature, however, appeared not to be heat shock proteins. Thus, the change in mRNAs induced by low temperature is a separate response from that induced by high temperature.

Original languageEnglish (US)
Pages (from-to)3673-3677
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number11
StatePublished - Jun 1985


Dive into the research topics of 'Altered gene expression during cold acclimation of spinach.'. Together they form a unique fingerprint.

Cite this