Abstract
Triad vesicles were isolated from normal (N) and homozygous malignant hyperthermia-susceptible (MHS) porcine skeletal muscle, and two types of sarcoplasmic reticulum Ca2+ release were investigated: 1) polylysine- induced Ca2+ release (direct stimulation of the junctional foot protein), and 2) depolarization-induced Ca2+ release (stimulation of the junctional foot protein via the dihydropyridine receptor). At submaximal concentrations of polylysine, the rates of induced Ca2+ release from the MHS triads were greater than from normal triads. The T tubules of polarized triads were depolarized by the K+-to-Na+ ionic replacement protocol. Higher grades of T-tubule depolarization resulted in higher rates of Ca2+ release from both MHS and normal triads but, when compared at a given grade of T-tubule depolarization, the release rate was always greater from the MHS than from normal triads. Thus the activity of the SR Ca2+ release channel is always higher in MHS than in normal muscle at a given submaximal dose of release trigger. This difference is observed when the channel is stimulated directly by polylysine or indirectly via a depolarization-induced activation of the T- tubule dihydropyridine receptor.
Original language | English (US) |
---|---|
Pages (from-to) | C1381-C1386 |
Journal | American Journal of Physiology - Cell Physiology |
Volume | 268 |
Issue number | 6 37-6 |
DOIs | |
State | Published - 1995 |
Keywords
- calcium release
- junctional foot protein
- sarcoplasmic reticulum
- skeletal muscle