All Electrospray Printing of Carbon-Based Cost-Effective Perovskite Solar Cells

Congcong Wu, Kai Wang, Yuanyuan Jiang, Dong Yang, Yuchen Hou, Tao Ye, Chan Su Han, Bo Chi, Li Zhao, Shimin Wang, Weiwei Deng, Shashank Priya

Research output: Contribution to journalArticlepeer-review

19 Scopus citations


With the power conversion efficiencies of perovskite solar cells (PSCs) exceeding 25%, the PSCs are a step closer to initial industrialization. Prior to transferring from laboratory fabrication to industrial manufacturing, issues such as scalability, material cost, and production line compatibility that significantly impact the manufacturing remain to be addressed. Here, breakthroughs on all these fronts are reported. Carbon-based PSCs with architecture fluorine doped tin oxide (FTO)/electron transport layer/perovskite/carbon, that eliminate the need for the hole transport layer and noble metal electrode, provide ultralow-cost configuration. This PSC architecture is manufactured using a scalable and industrially compatible electrospray (ES) technique, which enables continuous printing of all the cell layers. The ES deposited electron transport layer and perovskite layer exhibit properties comparable to that of the laboratory-scale spin coating method. The ES deposited carbon electrode layer exhibits superior conductivity and interfacial microstructure in comparison to films synthesized using the conventional doctor blading technique. As a result, the fully ES printed carbon-based PSCs show a record 14.41% power conversion efficiency, rivaling the state-of-the-art hole transporter-free PSCs. These results will immediately have an impact on the scalable production of PSCs.

Original languageEnglish (US)
Article number2006803
JournalAdvanced Functional Materials
Issue number6
StatePublished - Feb 3 2021
Externally publishedYes

Bibliographical note

Funding Information:
C.W., K.W., and Y.J. contributed equally to this work. C.W., L.Z., and S.W. acknowledge the support from Key Program for Intergovernmental S&T Innovation Cooperation Projects of National Key R&D Program of China (2019YFE0107100). C.W. acknowledges National Science Foundation for Young Scientists of China (Grant No. 62004064). K.W. and Y.H. acknowledge the support from Nanosonic through SBIR program. S.P. acknowledges the financial support from the Office of Naval Research through grant number N000141912461. D.Y. acknowledges the support from National Science Foundation through grant number 1904811. T.Y. acknowledges the support from Office of Naval Research through grant number N000141712520. W.D. acknowledges the support from the National Natural Science Foundation of China (No. 11932009). The authors thank Yaxing Li for the great help in the electrospray system setup.

Publisher Copyright:
© 2020 Wiley-VCH GmbH


  • carbon electrode
  • electrospray
  • low-cost solar cells
  • perovskite


Dive into the research topics of 'All Electrospray Printing of Carbon-Based Cost-Effective Perovskite Solar Cells'. Together they form a unique fingerprint.

Cite this