TY - JOUR
T1 - Aleksandrov reflection and nonlinear evolution equations, I
T2 - The n-sphere and n-ball
AU - Chow, Bennett
AU - Gulliver, Robert
N1 - Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 1996/4
Y1 - 1996/4
N2 - We consider the (degenerate) parabolic equation ut = G(∇∇u + ug, t) on the n-sphere Sn. This corresponds to the evolution of a hypersurface in Euclidean space by a general function of the principal curvatures, where u is the support function. Using a version of the Aleksandrov reflection method, we prove the uniform gradient estimate |∇u(·, t)| ≤ C, where C depends on the initial condition u(·, 0) but not on t, nor on the nonlinear function G. We also prove analogous results for the equation ut = G(Δu + cu, |x|, t) on the n-ball Bn, where c ≤ λ2(Bn).
AB - We consider the (degenerate) parabolic equation ut = G(∇∇u + ug, t) on the n-sphere Sn. This corresponds to the evolution of a hypersurface in Euclidean space by a general function of the principal curvatures, where u is the support function. Using a version of the Aleksandrov reflection method, we prove the uniform gradient estimate |∇u(·, t)| ≤ C, where C depends on the initial condition u(·, 0) but not on t, nor on the nonlinear function G. We also prove analogous results for the equation ut = G(Δu + cu, |x|, t) on the n-ball Bn, where c ≤ λ2(Bn).
UR - http://www.scopus.com/inward/record.url?scp=0039679681&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0039679681&partnerID=8YFLogxK
U2 - 10.1007/BF01254346
DO - 10.1007/BF01254346
M3 - Article
AN - SCOPUS:0039679681
SN - 0944-2669
VL - 4
SP - 249
EP - 264
JO - Calculus of Variations and Partial Differential Equations
JF - Calculus of Variations and Partial Differential Equations
IS - 3
ER -