Air compression performance improvement via trajectory optimization - Experimental validation

Mohsen Saadat, Perry Y. Li, Anirudh Srivatsa, Terrence Simon

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

In an isothermal compressed air energy storage (CAES) system, it is critical that the high pressure air compressor/expander is both efficient and power dense. The fundamental trade-off between efficiency and power density is due to limitation in heat transfer capacity during the compression/expansion process. In our previous works, optimization of the compression/expansion trajectory has been proposed as a means to mitigate this tradeoff. Analysis and simulations have shown that the use of optimized trajectory can increase power density significantly (2-3 fold) over ad-hoc linear or sinusoidal trajectories without sacrificing efficiency especially for high pressure ratios. This paper presents the first experimental validation of this approach in high pressure (7bar to 200bar) compression. Experiments are performed on an instrumented liquid piston compressor. Correlations for the heat transfer coefficient were obtained empirically from a set of CFD simulations under different conditions. Dynamic programming approach is used to calculate the optimal compression trajectories by minimizing the compression time for a range of desired compression efficiencies. These compression profiles (as function of compression time) are then tracked in a liquid piston air compressor testbed using a combination of feedforward and feedback control strategy. Compared to ad-hoc constant flow rate trajectories, the optimal trajectories double the power density at 80% efficiency or improve the thermal efficiency by 5% over a range of power densities.

Original languageEnglish (US)
Title of host publicationAdvances in Control Design Methods, Nonlinear and Optimal Control, Robotics, and Wind Energy Systems; Aerospace Applications; Assistive and Rehabilitation Robotics; Assistive Robotics; Battery and Oil and Gas Systems; Bioengineering Applications; Biomedical and Neural Systems Modeling, Diagnostics and Healthcare; Control and Monitoring of Vibratory Systems; Diagnostics and Detection; Energy Harvesting; Estimation and Identification; Fuel Cells/Energy Storage; Intelligent Transportation
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791850695
DOIs
StatePublished - 2016
EventASME 2016 Dynamic Systems and Control Conference, DSCC 2016 - Minneapolis, United States
Duration: Oct 12 2016Oct 14 2016

Publication series

NameASME 2016 Dynamic Systems and Control Conference, DSCC 2016
Volume1

Other

OtherASME 2016 Dynamic Systems and Control Conference, DSCC 2016
Country/TerritoryUnited States
CityMinneapolis
Period10/12/1610/14/16

Bibliographical note

Funding Information:
This work is supported by the National Science Foundation under grant ENG/EFRI-1038294.

Publisher Copyright:
Copyright © 2016 by ASME.

Fingerprint

Dive into the research topics of 'Air compression performance improvement via trajectory optimization - Experimental validation'. Together they form a unique fingerprint.

Cite this