AiR: Attention with Reasoning Capability

Shi Chen, Ming Jiang, Jinhui Yang, Qi Zhao

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

While attention has been an increasingly popular component in deep neural networks to both interpret and boost performance of models, little work has examined how attention progresses to accomplish a task and whether it is reasonable. In this work, we propose an Attention with Reasoning capability (AiR) framework that uses attention to understand and improve the process leading to task outcomes. We first define an evaluation metric based on a sequence of atomic reasoning operations, enabling quantitative measurement of attention that considers the reasoning process. We then collect human eye-tracking and answer correctness data, and analyze various machine and human attentions on their reasoning capability and how they impact task performance. Furthermore, we propose a supervision method to jointly and progressively optimize attention, reasoning, and task performance so that models learn to look at regions of interests by following a reasoning process. We demonstrate the effectiveness of the proposed framework in analyzing and modeling attention with better reasoning capability and task performance. The code and data are available at https://github.com/szzexpoi/AiR.

Original languageEnglish (US)
Title of host publicationComputer Vision – ECCV 2020 - 16th European Conference, 2020, Proceedings
EditorsAndrea Vedaldi, Horst Bischof, Thomas Brox, Jan-Michael Frahm
PublisherSpringer Science and Business Media Deutschland GmbH
Pages91-107
Number of pages17
ISBN (Print)9783030584511
DOIs
StatePublished - 2020
Event16th European Conference on Computer Vision, ECCV 2020 - Glasgow, United Kingdom
Duration: Aug 23 2020Aug 28 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12346 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference16th European Conference on Computer Vision, ECCV 2020
Country/TerritoryUnited Kingdom
CityGlasgow
Period8/23/208/28/20

Bibliographical note

Funding Information:
This work is supported by NSF Grants 1908711 and 1849107.

Publisher Copyright:
© 2020, Springer Nature Switzerland AG.

Keywords

  • Attention
  • Eye-tracking dataset
  • Reasoning

Fingerprint

Dive into the research topics of 'AiR: Attention with Reasoning Capability'. Together they form a unique fingerprint.

Cite this