TY - JOUR
T1 - Aging and exercise training in skeletal muscle
T2 - Responses of glutathione and antioxidant enzyme systems
AU - Leeuwenburgh, C.
AU - Fiebig, R.
AU - Chandwaney, R.
AU - Li Li Ji, Li Ji
PY - 1994
Y1 - 1994
N2 - Glutathione (GSH) content and antioxidant enzyme activities were investigated in skeletal muscle of young, adult, and old male Fischer 344 rats. Furthermore, the effect of 10 wk of exercise training on these antioxidant systems was evaluated at all ages. In the soleus muscle, GSH concentration increased markedly with age, with no significant change in glutathione disulfide (GSSG) content. Training caused a 30% decrease of GSH (P < 0.05) in the soleus of young rats and a reduction of the GSH-to-GSSG ratio at all ages. Activity of γ-glutamyl transpeptidase (GGT), a key enzyme for GSH uptake by muscle, was also significantly decreased with training. GSH, GSSG, and the GSH-to-GSSG ratio were not altered with aging or training in the deep portion of vastus lateralis muscle (DVL). Activities of GSH peroxidase (GPX). GSSG reductase (GR), superoxide dismutase (SOD), catalase (CAT), and GSH sulfur-transferase were increased significantly with aging in both soleus and DVL. In DVL, training increased GPX and SOD activities in the young rats, whereas in soleus, training decreased GR and CAT activities in the adult rats and GGT and CAT activities in the old rats. Muscle lipid peroxidation was significantly increased with aging in both DVL and soleus but was not affected by training. These data indicate that aging may cause not only an overall elevation of antioxidant enzyme activities but also a fiber-specific adaptation of GSH system in skeletal muscle. Exercise training, although increasing selective antioxidant enzymes in the young rats, does not offer additional protection against oxidative stress in the senescent muscle.
AB - Glutathione (GSH) content and antioxidant enzyme activities were investigated in skeletal muscle of young, adult, and old male Fischer 344 rats. Furthermore, the effect of 10 wk of exercise training on these antioxidant systems was evaluated at all ages. In the soleus muscle, GSH concentration increased markedly with age, with no significant change in glutathione disulfide (GSSG) content. Training caused a 30% decrease of GSH (P < 0.05) in the soleus of young rats and a reduction of the GSH-to-GSSG ratio at all ages. Activity of γ-glutamyl transpeptidase (GGT), a key enzyme for GSH uptake by muscle, was also significantly decreased with training. GSH, GSSG, and the GSH-to-GSSG ratio were not altered with aging or training in the deep portion of vastus lateralis muscle (DVL). Activities of GSH peroxidase (GPX). GSSG reductase (GR), superoxide dismutase (SOD), catalase (CAT), and GSH sulfur-transferase were increased significantly with aging in both soleus and DVL. In DVL, training increased GPX and SOD activities in the young rats, whereas in soleus, training decreased GR and CAT activities in the adult rats and GGT and CAT activities in the old rats. Muscle lipid peroxidation was significantly increased with aging in both DVL and soleus but was not affected by training. These data indicate that aging may cause not only an overall elevation of antioxidant enzyme activities but also a fiber-specific adaptation of GSH system in skeletal muscle. Exercise training, although increasing selective antioxidant enzymes in the young rats, does not offer additional protection against oxidative stress in the senescent muscle.
KW - lipid peroxidation
KW - oxidative stress
KW - soleus
KW - vastus lateralis
UR - http://www.scopus.com/inward/record.url?scp=0028132811&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028132811&partnerID=8YFLogxK
U2 - 10.1152/ajpregu.1994.267.2.r439
DO - 10.1152/ajpregu.1994.267.2.r439
M3 - Article
C2 - 8067452
AN - SCOPUS:0028132811
SN - 0363-6119
VL - 267
SP - R439-R445
JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
IS - 2 36-2
ER -